第六章第二節 結構評估

目錄

二、結構評估	6.2.1-1
(一) 前言	6.2.1-1
(二) 設計準則與工業標準	6.2.2-1
1. 法規需求與重要組件設計準則	6.2.2-1
2. 天然災害	6.2.2-1
3. 程序及方法	6.2.2-1
4. 風、雪及雨負荷;颱風風速轉換壓力	6.2.2-1
5. 地震分析	6.2.2-1
6. 載重組合	6.2.2-2
(三) 設計特性	6.2.3-1
1. INER-HPS 系統各組件重量及重心	6.2.3-1
2. 化學及電位反應	6.2.3-1
(四) 材料性質	6.2.4-1
1. 主要組件材料	6.2.4-1
2. 破壞韌性考量	6.2.4-3
(五) 分析程式	6.2.5-1
1. ANSYS 程式	6.2.5-1
2. LS-DYNA 程式	6.2.5-1
3. SHAKE 程式	6.2.5-1
4. SASSI 程式	6.2.5-1
5. STAAD Pro 程式	6.2.5-1
(六)分析計算及結果	6.2.6-1
1. 吊運狀況下各組件之結構分析	6.2.6-1
2. 正常貯存狀況分析	6.2.6-29
3. 貯存場混凝土基座評估	6.2.6-48

(七)	結語		.6.2.7-1
(八)	參考文獻.		.6.2.8-1
附錄	6.2.A 貯存	字系統之材料機械性質	6.2.A-1
附錄	6.2.B 傳送	送護箱之保護環分析	6.2.B-1
附錄	6.2.C 傳送	送護箱之保護環螺栓分析	6.2.C-1

附圖目錄

啚	6.2.6-1	INER-HPS 系統密封鋼筒吊環設計	. 6.2.6-54
圖	6.2.6-2	INER-HPS 系統傳送護箱吊耳軸	. 6.2.6-54
圖	6.2.6-3	INER-HPS 系統混凝土護箱吊耳設計	. 6.2.6-55
圖	6.2.6-4	基座銲件有限元素模式	. 6.2.6-56
圖	6.2.6-5	密封鋼筒吊舉有限元素模式	. 6.2.6-57
圖	6.2.6-6	密封鋼筒吊舉應力圖	. 6.2.6-57
圖	6.2.6-7	傳送護箱外壁體及吊耳軸之有限元素模式	. 6.2.6-58
圖	6.2.6-8	傳送護箱外壁體與吊耳軸接合節點位置	. 6.2.6-59
圖	6.2.6-9	傳送護箱內壁體與吊耳軸接合節點位置	. 6.2.6-59
圖	6.2.6-10	0 密封鋼筒組成有限元素模式	. 6.2.6-60
圖	6.2.6-1	1 位於結構上蓋及屏蔽上蓋密封鋼筒組成銲接區有限元素模式	. 6.2.6-61
圖	6.2.6-12	2 密封鋼筒組成底板有限元素模式	. 6.2.6-61
圖	6.2.6-1	3 密封鋼筒組成內區段應力位置之有限元素模式	. 6.2.6-62
圖	6.2.6-14	4 典型提籃組件	. 6.2.6-63
圖	6.2.6-1	5 提籃承載圓盤有限元素模式	. 6.2.6-63
圖	6.2.6-1	6 提籃承載圓盤部分應力評估	. 6.2.6-64
圖	6.2.6-1	7 提籃頂端銲件板有限元素模式	. 6.2.6-65
圖	6.2.6-18	8 提籃底部銲件板有限元素模式	. 6.2.6-65
圖	6.2.6-19	9 燃料管幾何形狀	. 6.2.6-66
圖	6.2.6-20	0 混凝土護箱熱應力模式	. 6.2.6-67
圖	6.2.6-2	1 混凝土護箱熱應力模式-垂直與水平鋼筋詳細佈置	. 6.2.6-68
圖	6.2.6-22	2 混凝土護箱熱應力模式邊界條件	. 6.2.6-69
圖	6.2.6-22	3 混凝土護箱熱應力模式軸向應力評估位置	. 6.2.6-70
圖	6.2.6-24	4 混凝土護箱熱應力模式圓周方向周圍應力評估位置	. 6.2.6-71
圖	6.2.6-2	5 中間環狀屏蔽穩態熱傳導分析模型-混凝土及鋼筋	. 6.2.6-72
圖	6.2.6-20	6 屏蔽上蓋穩態熱傳導分析模型-混凝土及鋼筋	. 6.2.6-73
圖	6.2.6-2	7 屏蔽底板穩態熱傳導分析模型-混凝土及鋼筋	. 6.2.6-74
圖	6.2.6-28	8 貯存場偏心載重平面圖	. 6.2.6-75
圖	6.2.6-29	9 貯存場配筋標準圖	. 6.2.6-76

附表目錄

表	6.2.2-1	密封鋼筒各組件應用規範之部份規定	6.2.2-3
表	6.2.2-2	傳送護箱各組件應用規範之部份規定	6.2.2-3
表	6.2.2-3	混凝土護箱各組件應用規範之部份規定	6.2.2-3
表	6.2.3-1	INER-HPS 系統各組件重量	6.2.3-5
表	6.2.6-1	吊運狀況下吊運組件之組合載重情況	. 6.2.6-77
表	6.2.6-2	吊運狀況下各結構物之結構分析	. 6.2.6-78
表	6.2.6-3	節點最大應力與 SA-36 碳鋼容許應力的比較	. 6.2.6-79
表	6.2.6-4	傳送護箱外壁體元件頂部表面前 30 高應力	. 6.2.6-80
表	6.2.6-5	傳送護箱外壁體元件底部表面前 30 高應力	. 6.2.6-81
表	6.2.6-6	傳送護箱內壁體元件頂部表面前 30 高應力	. 6.2.6-82
表	6.2.6-7	傳送護箱內壁體元件底部表面前 30 高應力	. 6.2.6-83
表	6.2.6-8	密封鋼筒及提籃各項分析之涵蓋條件	. 6.2.6-84
表	6.2.6-9	密封鋼筒主要位置輸入節點溫度值	. 6.2.6-84
表	6.2.6-10) 密封鋼筒次要(熱)應力(MPa)	. 6.2.6-85
表	6.2.6-11	靜載重(立於地上)對密封鋼筒主要薄膜應力 Pm (MPa)	. 6.2.6-85
表	6.2.6-12	2 靜載重(立於地上)對密封鋼筒主要薄膜+彎矩應力 Pm+Pb (MPa	a)
			. 6.2.6-86
表	6.2.6-13) 正常狀態(內壓力 15 psi)對密封鋼筒主要薄膜應力 Pm (MPa)	. 6.2.6-86
表	6.2.6-14	- 正常狀態(內壓力 15 psi)對密封鋼筒主要薄膜+彎矩應力 Pm+Pl	b (MPa)
+		· 口···································	. 6.2.6-87
表	6.2.6-15	• 币運狀態(無內壓)對密封鋼筒主要薄膜應力 Pm (MPa)	. 6.2.6-87
表	6.2.6-16) 吊運狀態(無內壓)密封鋼筒主要薄膜+彎矩應力 Pm+Pb (MPa)	. 6.2.6-88
表	6.2.6-17	'正常狀態時組合負載對密封鋼筒主要薄膜應力 Pm (MPa)	. 6.2.6-88
表	6.2.6-18	5 正常狀態時組合負載對密封鋼筒主要薄膜+彎矩應力 Pm+Pb (M	MPa)
+		工业小华叶仁人力投业的上门的放上五茶叶,缴厂、上五本人 口。	. 6.2.6-89
衣	6.2.6-19	止常狀態時組合貝載對密封鋼向 王要溥腜+弯矩+次要應刀P+	-Q (MPa)
丰	 6 2 6_20)正带华能下凉井细笛由承载圆般 土西蒲腊山繼拓雁力 DmiDh (. 0.2.0-89 (MPa)
K	0.2.0-20	1 正市欣忽下峦封驷问十不戦圆盈 工女得族干弓龙悠月1111110(626-90
表	6.2.6-21	正常狀態下密封鋼筒中提籃 主要薄膜+彎矩+剪力應力Pm+Pb+	-O (MPa)
10			. 6.2.6-91
表	6.2.6-22	2 提籃銲件之最大應力-正常情況(MPa)	. 6.2.6-92
表	6.2.6-23	混凝土護箱負載組合計算最大應力值	. 6.2.6-93
表	6.2.6-24	混凝土及鋼筋最大應力	. 6.2.6-94
表	6.2.6-25	「混凝土護箱平均混凝土軸向張應力	. 6.2.6-94
表	6.2.6-26	5 混凝土護箱平均混凝土圓周向張應力	. 6.2.6-95
表	6.2.6-27	'外加屏蔽於不同狀況下內外表面之最大溫度差統計表	. 6.2.6-95
表	6.2.6-28	3 外加屏蔽應力及安全餘裕統計表	. 6.2.6-97
表	6.2.6-29) 整地前簡化土層表與土層參數表	. 6.2.6-98
表	6.2.6-30) 整地後簡化土層表與土層參數表	. 6.2.6-98

表 6.2.	6-31	基座東側混凝土護箱局部區域立即彈性沉陷計算表	6.2.6-99
表 6.2.	6-32	基座西側混凝土地坪區域立即彈性沉陷計算表	6.2.6-100
表 6.2.	A-1	SA-240, Type 304 不銹鋼機械性質	6.2.A-2
表 6.2.	A-2	SA-479, Type 304 不銹鋼機械性質	6.2.A-3
表 6.2.	A-3	SA-240, Type 304L 不銹鋼機械性質	6.2.A-4
表 6.2.	A-4	SA-705, SA-693 And SA-564, Type 630 17-4 PH 不銹鋼機械性	主質
			6.2.A-5
表 6.2.	A-5	A36/SA-36 碳鋼機械性質	6.2.A-6
表 6.2.	A-6	A615 Grade 60、Grade 75 及 A706 鋼筋機械性質	6.2.A-7
表 6.2.	A-7	SA-533, Type B, Class 2 碳鋼機械性質	6.2.A-8
表 6.2.	A-8	A588, Type A,B 碳鋼機械性質	6.2.A-9
表 6.2.	A-9	SA-350 Grade LF 2, Class 1 碳鋼機械性質	6.2.A-10
表 6.2.	A-10	SA-193, Grade B6,高合金鋼螺栓材料機械性質	6.2.A-11
表 6.2.	A-11	6061-T651 鋁合金機械性質	6.2.A-12
表 6.2.	A-12	混凝土碳鋼機械性質	6.2.A-13
表 6.2.	A-13	NS-4-FR 中子屏蔽機械性質	6.2.A-13
表 6.2.	A-14	SA-516, Grade 70 碳鋼機械性質	6.2.A-14

二、 結構評估

(一) 前言

本節主要敘述用過核子燃料乾式貯存設施之結構評估,將相關組件區分為貯存設備及吊運設備,分別進行結構安全評估。貯存設備評估包含密封鋼筒(Transportable Storage Canister, TSC)、混凝土護箱(Vertical Concrete Cask, VCC)及外加屏蔽(Add-on Shielding, AOS)於貯存時的結構安全分析;吊運設備評估包含傳送護箱(Transfer Cask, TFR)及相關吊運組件於裝載情況下之結構安全分析。此外,貯存場址混凝土基座的承載力與沉陷量,亦於本章節中評估。

評估的方法是以傳統的力學理論或是透過有限元素程式(ANSYS 9.0)建 立分析模式進行更細微的分析計算後,再配合分析件所適用的規範進行判別 元件受力情況是否符合規範要求;一般而言,貯存設施中的金屬結構物採用 ASME Code,混凝土結構物採用 ACI 349,至於吊運設施則適用於 NUREG 0612 與 ANSI N14.6 等法規要求,而整體貯存設施的設計則須遵循 10 CFR72 與 NUREG-1536[61]及 NUREG-1567[62]的規範。

本節主要針對貯存設施在正常貯存狀態與吊運時的分析計算,分析結果 顯示貯存設施在正常貯存與吊運時,均能維持正值安全餘裕;另系統在設計 的各項操作過程中,皆可保有結構完整性,無結構破損與放射性物質外洩之 虞。而異常貯存狀態與意外事故時,貯存設施依然保有結構完整性並執行其 正常功能,其詳細分析計算見本章第六節。

(二) 設計準則與工業標準

1. 法規需求與重要組件設計準則

本系統之設計主要是遵循 10 CFR72[1] ,而系統主要組件之設計係 依據 NUREG-1536[61]及 NUREG-1567[62]的規定,並符合下列法規之要 求。

- (1) 密封鋼筒-ASME B&PV Code, Section III
- (2) 鋼筋混凝土結構-ANSI/ANS 57.9[3] & ACI 349[4]
- (3) 其他安全重要系統組件
- 鋼結構-ASME B&PV Code, Section III
- 非 ASME 結構、系統與組件 ANSI/ANS-57.9[3]
- 吊運設備-NUREG-0612 [8], ANSI- N14.6[9]

密封鋼筒各組件應用規範之部份規定如表 6.2.2-1;傳送護箱各組件 應用規範之部份規定如表 6.2.2-2;混凝土護箱各組件應用規範之部份規定 如表 6.2.2-3。

2. 天然災害

天然災害(natural phenomena)-NUREG-0800

3. 程序及方法

程序及方法(procedures and approaches)-RG 3.53

4. 風、雪及兩負荷;颱風風速轉換壓力

風、雪及雨負載(wind, snow, and rain loads);颱風風速轉換壓力 (conversion of typhoon wind speed to pressure)-ASCE 7

5. 地震分析

地震分析(Seismic analysis)-ASCE 4

6. 載重組合

載重組合(load combination)-NUREG-1536 Section 3.0

組件	材 料	設計	製造	檢驗
密封邊界	Section III, NB-2000	Section III, NB-3000	Section III, NB-4000	Section III, NB-5000 及 Section V
燃料提籃	Section III, NG-2000 及 NUREG/CR-6322 [7]	Section III, NG-3000	Section III, NG-4000	Section III, NG-5000 及 Section V

表 6.2.2-1 密封鋼筒各組件應用規範之部份規定

NB-ASME Code Section III, NB [5]

NG-ASME Code Section III, NG [6]

表 6.2.2-2 傳送護箱各組件應用規範之部份規定

組 件	材料	設計	製造	檢驗
		ANSI N14.6[9]		
護箱結構物	ANSI N14.6[9]	及	ANSI N14.6[9]	ANSI N14.6[9]
		NUREG-0612[8]		

表 6.2.2-3 混凝土護箱各組件應用規範之部份規定

組 件	材料	設 計	製造	检验	
			AISC(ASD)	AISC(ASD)	
金屬結構物	(2004 Ms)	AISC(ASD) [23]	及 及		
	(2004 hx)		AWS[55]	AWS[55]	
	ACI 318 (2005版)	ACI 240[4] B			
			泪锅上部八ACI 218	泪岛上部八ACI 218	
混凝土結構物	及	ACI 349[4] X $ANSI/ANS 57 0[3]$	此族工印分ACI 310 甘山ACI 340	施艇工部分ACI 510 甘仙ACI 240	
	ASTM	ANSI/ANS-57.9[5]	共他ACI 34 9	共他ACI 349	
	(2004版)				

(三) 設計特性

1. INER-HPS 系統各組件重量及重心

INER-HPS 系統各組件之重量及重心,如表 6.2.3-1 所示,按此數據 將用於下述章節相關結構分析中。

2. 化學及電位反應

本節評估 INER-HPS 系統之各組件材料,在製造及運轉期間化學、 電位及其他反應發生之可能性,評估範圍包括運轉之所有階段—裝載 (loading)、卸載(unloading)、操作(handling)、貯存時之正常(normal)、 異常(off-normal)或意外事故(accident)等狀況,評估內容符合 NRC Bulletin 96-04[18]之要求。評估結果顯示,沒有潛在反應會對混凝土護箱、提籃及 密封鋼筒之完整性造成影響。

(1) 組件運轉環境

大部分 INER-HPS 系統組件材料均在以下兩種環境中運轉:(1)未 密封的鋼筒內含燃料池水、用過核子燃料及其他放射性物質,(2)已密 封之鋼筒內含氦氣,外部則與空氣、兩及海風等環境接觸,即最終長期貯 存之環境。由於密封鋼筒內部為乾燥的氦氣,故可有效的杜絕化學腐蝕及 抑制不同金屬間電位腐蝕。

(2) 材料分類

本節將物理與化學性質相近的材料,分類為不銹鋼、非鐵金屬、碳 鋼、塗層、混凝土、中子吸收材料及中子屏蔽材料,依其曝露環境進行其 潛在化學及電位腐蝕分析,並詳述於後。 密封鋼筒不銹鋼組件惟有在濱海環境中,含氯鹽類附著其外部且 含水達數週,才有發生表面腐蝕的可能,其腐蝕產物或氣體量相對 小至無法偵測。若組件外表面光滑,則可更有效減少物質堆積狀況。

各種不銹鋼材料間因無有效之電化學勢,故不會發生電位腐蝕。 沃斯田鐵系列不銹鋼與鋁之間雖有電化學勢,但其為相對陰極,故 受鋁保護不致產生電位腐蝕。另密封鋼筒內為惰性(氦氣)環境,可有 效防止上述情況產生。

鋼筒密封邊界材料為 304L 不銹鋼,屏蔽上蓋(shield lid)材料 則為 304 不銹鋼。前者在銲接時晶界具有抗衝擊能力,故密封鋼筒 在壽限內不會產生晶粒間應力腐蝕;後者雖在銲接期間產生些微敏 化(sensitization),但不影響其在密封鋼筒壽限內之功能。

B. 非鐵金屬

鋁在提籃作為熱傳導的材料,其與沃斯田鐵不銹鋼在水中接觸可 能因電位差而造成腐蝕,故在密封鋼筒裝卸期間,可能因鋁製導熱 圓盤(heat transfer disk)與提籃及燃料池水接觸,而有少量氫氣產生, 但當水自密封鋼筒中排除時反應也隨之停止。

鋁製導熱圓盤及中子吸收材在安裝前均已惰性化(passivated), 故當設施在燃料池中操作時,鋁製導熱圓盤及中子吸收材料,不會 與其他不銹鋼結構因電位差而有腐蝕現象發生。

在裝載過程中密封鋼筒封閉作業時,上述產生之氣體會聚集在屏 蔽上蓋下方,有可能產生化學反應。鋁的表面易產生氧化膜形成保 護,不致與其他材料產生反應,該氧化膜在空氣中呈穩定狀態,但 些許會溶於水,溶解速率視水的 pH 值、溫度與鋁的溫度,以及在水 中的曝露時間而定。故在裝載作業時,將在銲接前及過程中,依程 序書監測氫氣含量,若不合規定則停止銲接作業並吸出氣體,當密 封鋼筒乾燥後應不會有任何氣體產生[19][20]。

6.2.3-2

提籃(basket)的承載圓盤(support disk)為碳鋼(SA-533)材質,表面覆以無電鍍鎳材質以保護其在水中不遭受銹蝕,因鎳鍍層 與池水不反應故不會產生氣體。碳鋼與鋁及沃斯田鐵間雖有些許電 化學勢,但加上鍍鎳保護後,在水中不產生電化學腐蝕。

傳送護箱主要由 ASTM A-588 碳鋼所製成,表面以環氧樹脂 (Epoxy)覆蓋,以防止銹蝕並形成光滑表面;混凝土護箱鋼內襯為 ASTM A36 碳鋼製成,亦以環氧樹脂覆蓋以防止銹蝕。

D. 塗層

使用之環氧樹脂材料為符合 Nuclear Service Level 2 之產品。部 分荷重表面如傳送護箱的接觸表面、門及軌道等,須塗覆核能級潤 滑劑。

提籃之承載圓盤碳鋼之無電鍍鎳層,須符合 ASTM B733-97, SC3, Type V, Class 1 [60]之規定。

E. 混凝土

混凝土護箱採用 Type Ⅱ 波特蘭水泥,並以垂直及水平鋼筋加 勁。其製造與施工過程,須依照程序書進行品質管制。

F. 中子吸收材料

中子吸收材料為在鋁合金護套(cladding)包裹碳化硼(boral carbide)材料之薄板,以不銹鋼蒙皮,將其固定在燃料管上。其抗腐 蝕特性與鋁相似,在出廠前已先執行惰性化處理,故不與外界產生 反應。

G. 中子屏蔽材料

中子屏蔽材料為混凝土及 NS-4-FR,由鋁、碳、氫、氧所組成, NS-4-FR 使用在傳送護箱,而混凝土使用在混凝土護箱的屏蔽塞

6.2.3-3

(shield plug),此種材料不與不銹鋼及碳鋼產生反應,且在日本、 西班牙及英國使用超過10年,未有劣化現象。

(3) 反應之常見影響

基於以上分析,INER-HPS 系統無潛在化學、電位及其他反應;所以, 在各運轉階段及正常、異常與意外狀況下,不會產生易燃氣體或足量可燃 氣體,也不會增加燃料中子量。

(4) 密封鋼筒運轉程序之適當性

根據以上分析,沒有潛在會造成影響性能的反應,且 INER-HPS 系統規劃之運轉作業程序(如偵測氫氣含量),亦能進一步有效降低可能的危害狀況。

(5) 反應產物之影響

因 INER-HPS 系統無潛在化學、電位及其他反應,故在設計壽命內 密封鋼筒整體的完整性及用過核子燃料的結構完整性,不會受到影響。根 據上述分析,密封鋼筒及燃料護套的性質將不會產生變化,亦不會產生表 面腐蝕;提籃及安全相關組件因為無潛在之反應,故不會有劣化現象。

n x	重量		重心位置 CG	
n a	kg	lb	mm	in
用過核子燃料	17,848	39,312		
燃料提籃	7,968	17,551		
鋼筒外殼	4,055	8,931		
密封鋼筒之屏蔽上蓋	3,113	6,856		
密封鋼筒結構上蓋	1,320	2,907		
密封鋼筒內之水+結構上蓋總重	6,856	15,101		
傳送護箱(不含吊軛及傳送銜接器)	46,175	101,706	2,423	95.4
混凝土護箱(含上蓋板及吊耳)	112,591	247,998	2,901	114.2
傳送護箱吊軛	2,665	5,870		
混凝土護箱頂蓋	1,113	2,452		
傳送銜接器	5,041	11,104		
混凝土護箱屏蔽塞	2,202	4,850		
滿載之密封鋼筒	34,303	75,557	2,492	98.1
滿載之混凝土護箱	146,894	323,555	2,939	115.7
滿載之傳送護箱(密封鋼筒內含水)	88,678	195,327		
滿載之傳送護箱(密封鋼筒內不含水)	83,142	183,133		
外加屏蔽	84,154	185,361	2,792	109.9

表 6.2.3-1 INER-HPS 系統各組件重量[48]

*CG 點位置是由該結構物最底部向上之距離

(四) 材料性質

系統各組件之機械性質請參考附錄 6.2.A,表 6.2.A-1 至表 6.2.A-14。 主要的鐵件有 Type 304 及 Type 304L 不銹鋼,因其具有高強度、韌性、 抵抗腐蝕及抗脆性破壞等特性,在長期貯存時亦有較好之穩定性。

關於材料性質與容許應力、應變、溫度及其他相關數據,請參考本節附錄 6.2.A 中說明。

1. 主要組件材料

(1) 密封鋼筒

鋼鐵及鋁合金用於密封鋼筒及提籃之製造,材料如下:

- 鋼筒外殼(canister shell)-ASME SA-240, Type 304L 不銹鋼
- 密封鋼筒底板(canister bottom plate)—ASME SA-240, Type 304L
 不銹鋼
- 密封鋼筒屏蔽上蓋(canister shield lid)—ASME SA-240, Type 304
 不銹鋼
- 密封鋼筒結構上蓋(canister structural lid)—ASME SA-240, Type 304L 不銹鋼
- 承載圓盤(support disks)-ASME SA-533, Type B class 2 碳鋼
- 導熱圓盤(heat transfer disks)—ASME SB-209, Type 6061-T651 鋁 合金
- 間隔環(spacers)-ASME SA-312, Type 304 不銹鋼
- 繫桿(tie rods)-ASME SA-479, Type 304 不銹鋼
- 提籃端銲件(basket end weldments)—ASME SA-240, Type 304 不銹鋼
- 燃料管(fuel tubes)-ASTM A240, Type 304 不銹鋼
- 中子吸收材料-BORAL

(2) 混凝土護箱

使用於混凝土護箱之金屬材料如下:

- 內壁體(inner shell)-ASTM A36 碳鋼
- 承載基座(pedestal and base)-ASTM A36 碳鋼
- 鋼筋(reinforcing bar) ASTM A615, Grade 60 碳鋼(CNS 560,

SD420)

ASTM A615, Grade 40 碳鋼(CNS 560,

SD280)

- Nelson stud 碳鋼,市售品
- 混凝土材料-波特蘭水泥 TYPE II

(3) 傳送護箱

使用於傳送護箱之金屬材料如下:

- 內壁體(inner shell)-ASTM A588 低合金鋼
- 外壁體(outer shell)-ASTM A588 低合金鋼
- 底板(bottom plate)-ASTM A588 低合金鋼
- 上蓋板(top plate)-ASTM A588 低合金鋼
- 保護環(retaining ring)-ASTM A588 低合金鋼
- 吊耳軸(trunnions)-ASTM A350, LF2 低合金鋼
- 屏蔽門及軌道(shield doors and rails)—ASTM A350, LF2 低合金 鋼
- 保護環螺栓(betaining ring bolts)—ASTM A193, Grade B6 高合金鋼

2. 破壞韌性考量

密封鋼筒和提籃之主要結構材料為不銹鋼,在系統設計的操作溫度 區間中,這些不銹鋼材料並不會因實際溫度變化而造成材料由延展性轉化 為脆性的情況。所以這些不銹鋼金屬不須考量金屬之破壞韌性(fracture toughness)。

混凝土護箱頂部的吊耳(lifting lug)是由 A-537, Class 2 製造,在每個 吊耳底部連接一組固定錨,亦是由 5 cm(2 in)厚之 A 537 Class 2 鋼板製成, 依法規 ANSI N14.6 設計。應用 ASME Code Section III, Subsection NF-2311(b)13 及 Figure NF-2311(b)-1 對破壞韌性之規定,金屬之最小允許 設計溫度為-20.6 °C (-5 °F) (Curve D, 5 cm(2 in)厚)。VCC 上舉吊耳限制使 用於周圍溫度大於或等於-17.8 °C(0 °F) (Section 12(B 3.4)(9)),因此於核一 廠操作環境下不需做衝擊試驗(impact testing)。

提籃承載圓盤(basket support disks)為 1.6 cm(0.625 in)厚之 SA 533, Type B, Class 2 碳鋼。依 ASME Code Section III, Subsection NG-2311(a) (1),對於厚度小於等於 1.6 cm(5/8 in)之材料是不需做衝擊試驗。

(五) 分析程式

關於本計畫在結構方面的分析方式是使用有限元素結構力學評估程 式 ANSYS、LS-DYNA,經程式計算求得各項結構組件之應力,再與組件 相關規範比較是否符合所需;另外,對於土壤結構互制效應分析,則以 SHAKE 91與SASSI程式進行評估;而貯存場基座設計與分析是以STAAD Pro 程式進行評估,以下分別說明之。

1. ANSYS 程式

於 NUREG 1536[61]第三章結構評估中說明有限元素分析模型是結構分析方式之一,本計畫結構分析工具使用 ANSYS 9.0 版本。

2. LS-DYNA 程式

依 NUREG 1567[62]第十五章意外事件審查分析之內容,組件之加減 速度、挫屈變形分析方法需使用動態有限元素分析,本計畫動態有限元素 分析工具使用 LS-DYNA 970 版本。

3. SHAKE 程式

SHAKE 91 於結構分析中,用於貯存場址土壤的評估計算,以作為貯存場址於地震分析時之輸入參數。

4. SASSI 程式

在於貯存場址的地震分析中,採用 SASSI 2000 程式,以計算岩層地 震時,因土壤結構互制效應(soil structure interaction)後,所造成之場址地 震加速度。

5. STAAD Pro 程式

STAAD Pro 2004 程式可用於基座版之分析與設計,模擬土壤彈簧效應之土壓力作用於基座,並進行基礎之配筋設計。

(六) 分析計算及結果

本節主要分析項目包含:

 吊運狀況下各組件之結構分析,包含密封鋼筒、混凝土護箱及傳送 護箱與吊運組件之結構分析。

於正常貯存狀況下,密封鋼筒及混凝土護箱中貯存組件之結構分析。
 有關吊運及貯存時之意外事故將於本章第六節中另行敘述。

1. 吊運狀況下各組件之結構分析

INER-HPS 所参考之 NAC UMS 系統已獲得 NRC Bulletin 96-02, "Movement of Heavy Loads Over Spent Fuel, Over Fuel in the Reactor Core, or Over Safety-Related Equipment"(April 11, 1996)的認證,其認證 包含範圍如下:

- UMS 的吊掛及運送組件,滿足 NUREG 0612 及 ANSI N14.6 對單一 或複置負載路徑下的要求。
- 傳送護箱在燃料池或放入混凝土護箱,或是在燃料池上方運送,應 依電廠特性進行分析。

為了使系統有效且安全地運送,各組件使用不同之吊運設備,如密 封鋼筒使用吊環(圖 6.2.6-1);混凝土護箱使用千斤頂及氣墊(jacks and air pads)作為底部運送、使用吊耳(圖 6.2.6-3,示意圖)作為頂部吊運;傳送護 箱使用吊耳軸(圖 6.2.6-2,示意圖)。

吊運狀況下吊運組件之組合載重情況如表 6.2.6-1。另各結構物之結構分析項目如表 6.2.6-2。

(1) 密封鋼筒吊舉評估[42]

密封鋼筒從準備、裝載、密封及運送都置於傳送護箱內。密封鋼筒 在頂部的結構上蓋有6個吊環,用於在屏蔽門(shield door)打開時,將密封 鋼筒吊放至混凝土護箱內,圖 6.2.6-1 是當密封鋼筒在無水時吊運所用的 吊環。

密封鋼筒之吊運設備包括吊環、結構上蓋,以及符合 NUREG-0612[8] 與 ANSI N14.6[9]所規定介於結構上蓋與密封鋼筒外殼之銲接。INER-HPS 系統之密封鋼筒吊運方式為使用 6 個均勻栓於結構上蓋頂部之吊環, 複置 系統分析時使用 3 個吊環。對於複置設計系統考量, ANSI N14.6 要求其 安全係數須大於材料降伏強度 3 倍與極限強度 5 倍以上之數值; 而對於非 複置設計系統考量, ANSI N14.6 要求其安全係數須大於材料降伏強度 6 倍與極限強度 10 倍以上, 結構上蓋主體應力分析亦是如此。

分析時使用滿載之密封鋼筒,重量為34,470 kg (76,000 lb),另依 ANSI 45.2.15 要求載重需外加10%之動態因子。吊運時所需分析項目包含:

A. 吊環應力分析。

B. 密封鋼筒外殼結構分析

A. 吊環應力分析。

依下圖,X 方向是從蓋板中心到吊環的距離(29.5in),Fy 為吊環垂直 作用力,Fx 為吊環水平作用力,R 是吊索長度,FR 是吊環容許應力 13,590 kg(30,000 lb), θ 是吊索從垂直方向往水平方向的角度。

吊環之容許強度為 13,590 kg(30,000 lb),
其容許強度與極限強度之安全係數比值為
5.1。故吊索之極限強度需大於 13,590 × 5.1 =
69,309 kg (150,000 lb)。

 $F_{y} = \frac{76,000 \text{ lb x } 1.1}{3 \text{ lift points}} = 27,867 \text{ lb} (12,624 \text{ kg})$ 計算承載 F_R為 13,590 kg(30,000 lb)之最大

角度:

$$\theta = \cos^{-1}\left(\frac{F_y}{F_R}\right) = \cos^{-1}\left(\frac{27,867}{30,000}\right) = 21.7 \text{ deg}$$

所需最短之繩索長R

R =
$$\frac{x}{\sin \theta} = \frac{29.5}{\sin 21.7^{\circ}} = 79.8$$
 in. (202.7 cm)

$$y = R \cos \theta = 80 \cos 21.7^{\circ} = 74.3 in(188.7 cm)$$

根據 Machinery's Handbook[24],結構上蓋頂部螺紋受剪力面積 An 計算如下:

所承受之剪應力為:

$$\tau = \frac{F_y}{A_n} = \frac{27,867 \ lb}{9.665 \ in^2} = 2,883 \ psi \ (19.88 \ MPa)$$

密封鋼筒之結構上蓋是 SA240, Type 304L 不銹鋼板,在 149°C(300°F)下容許剪應力為 0.6Sy 與 0.5Su,當螺紋剪應力為 19.88 MPa(2,883 psi), 依據 ASME NB-3227.2 規定其安全係數如下:

$$FS_{y} = \frac{0.6 \text{ x } 19,200 \text{ psi}}{2,883 \text{ psi}} = 4.0 > 3$$

$$FS_{u} = \frac{0.5 \text{ x } 61,200 \text{ psi}}{2,883 \text{ psi}} = 10.6 > 5$$

依據 NUREG-0612 及 ANSI N14.6 規定, 2 in(5.1 cm)螺紋之螺栓吊環 可滿足設計需求。

B. 密封鋼筒外殼結構分析

本節運用有限元素分析方式評估密封鋼筒之結構上蓋與銲接的結構。圖 6.2.6-5 為結構上蓋及屏蔽上蓋之對稱模式,使用間隙/彈簧 (gap/spring)元素模擬相接情形,用 COMBIN40 元素模擬上蓋間 Y 向之自 由度,另用 CONTAC52 元素模擬結構上蓋與外壁間之接觸現象,其間隔 距離為 1×10⁻⁸ in,間隙/彈簧元素勁度為 1×10⁸ lb/in。

邊界條件為在 X-Y 平面對稱,在 X-Y 平面中垂直方向 UZ 是被束制, 在模型底部 X-Z 平面中垂直方向 UY 是被束制。

密封鋼筒吊運架構包含 6 個均勻栓於結構上蓋頂部之吊環,模擬分析時考慮 ANSI 45.2.15 規定之 10 %動態載重,因對稱模式 W12 受力為W6 之半,如圖 6.2.6-5。

 $W/6 = (76,000 \text{ lb} \times 1.1)/6 = 13,934 \text{ lb}(6,326 \text{ kg})$

 $W/12 = (76,000 \text{ lb} \times 1.1)/12 = 6,967 \text{ lb}(3,163 \text{ kg})$

為評估蓋板於吊運期間對銲接處之應力,將應力均佈作用於銲接截 面上,圖 6.2.6-5 說明各切面,下表為在 149 °C(300 °F)下受力結果。

元 件	節點應力		
70件	MPa	psi	
密封鋼筒外殼 (吊舉時之結構銲道下方之壁殼表面)	20.41	2,959.9	
結構上蓋	21.07	3,055.4	
屏蔽上蓋	2.22	322.62	
結構上蓋銲道	8.62	1,250.3	
屏蔽上蓋銲道	9.95	1,443.2	

由圖 6.2.6-6 得知結構上蓋之節點最大應力為 21.07 MPa(3,055 psi), 安全係數如下:

FS_y = 降伏強度/節點最大應力強度(stress intensity) = 19,200/3,055 (psi) = 6.28 (>6)

 $FS_{\mu} =$ 極限強度/節點最大應力強度= 61,200/3,055(psi) = 20.03 (>10)

上述符合 NUREG-0612 及 ANSI N14.6 中複置系統及非複置系統之規定。

(2) 混凝土護箱吊舉評估

混凝土護箱吊舉評估分為兩大方式:

A. 護箱底部使用千斤頂及氣墊系統,稱為底部上舉運送方式。

B. 使用頂部吊耳執行吊運的工作,稱為頂部吊運運送方式。

吊運作業分析方法主要以 ACI-349 及 ANSI N14.6 為依據,作業程序 於各評估中說明。

A. 底部上舉評估[49]

其操作方式是先將千斤頂安裝在進氣口處,使用同步提升系統將 混凝土護箱提升約 10.2 cm(4 in)的高度,放入尚未充氣之氣墊後,將 千斤頂下降並移除,氣墊充氣後提起混凝土護箱並移動至預定位 置,再依反順序移除氣墊。

本計畫混凝土護箱(含滿載密封鋼筒時)重量為 142,610 kg(314,400 lb),均匀分佈在四個千斤頂上,評估時所受負載保守採 用 149,490 kg(330,000 lb)。

底部上舉運送分析項目包含:(A) 混凝土承載壓應力分析。(B) 底部 Nelson studs 張力分析。(C) 底座銲件之立管(pedestal ring)分 析。(D) 底部支撐氣墊分析。

(A) 混凝土承載壓應力分析

為確保千斤頂在抬起混凝土護箱時,混凝土護箱有足夠的承載面積分散載重,不致超過混凝土護箱之混凝土容許壓應力,在每一個千斤頂處,混凝土容許承壓力依據 ACI 349-97 Chapter 10 計算如下:

$$U_{b} = 0.85 \cdot \varphi \cdot f_{c} \cdot A_{1} \cdot \sqrt{\frac{A_{2}}{A_{1}}} = 0.85 \frac{(0.7)(4,000) \pi d^{2}}{4} \cdot 2 = 3,738 d^{2},$$

其中:

 $\phi = 0.7$ 承載強度折減因子(strength reduction factor for bearing),

 $f_c' = 4,000 \text{ psi}$ (27.6 MPa) 混凝土抗壓強度(concrete compressive strength),

$$\begin{split} A_1 &= \frac{\pi \times d^2}{4} = \frac{\pi \times 8.625^2}{4} = 58.4 \text{ in}^2 為千斤頂經 45 度傳遞後之混凝 \\ &\pm 承載面積 , \\ A_2 &= \frac{\pi \times (R_1 - R_2)^2}{4} = \frac{\pi \times (136/2 - 79.5/2)^2}{4} = 627 \text{ in}^2 為混凝土可承載 \\ &\gtrsim 面積 , \\ \sqrt{\frac{A_2}{A_1}} 之計算值若小於 2 時,可直接採用計算值;若大於 2,則只 能採用 2。 \end{split}$$

容許壓應力必須大於實際負載乘上載重因子之混凝土護箱所受 壓應力,負載因子 Lf = 1.4。

3,738 d² >
$$\frac{L_f \times W}{n} = \frac{1.4(330,000 \text{ lb})}{4} \Rightarrow d > 5.55 \text{ in.},$$

其中:

n = 千斤頂數,4 W = 混凝土護箱重量 149,490 kg(330,000 lb) L_f = 負載因子(load factor) = 1.4

上述計算得直徑 d 是满足分散載重最小容許面積,千斤頂作用在 厚 5.7 cm(2.25 in)之進氣孔鋼板上,厚板之力量傳遞效應增加承載直 徑從 10.5 cm(4.125 in)增至 21.9 cm(8.625 in),假設依據 45 度圓錐傳 遞影響。

每一千斤頂所承載的面積為:
$$\frac{\pi \times 8.625 \text{ in}^2}{4} \approx 58.4 \text{ in}^2$$
 (37,677mm²)

承載應力為: =
$$\sigma = \frac{P}{A} = \frac{(1.4)(330,000 \text{ lb})}{4(58.4 \text{ in}^2)} = 1,978 \text{ psi}(13.63 \text{ MPa})$$

容許承載應力為: $\sigma = 0.85 \phi f_c^{,\prime} \sqrt{\frac{A_2}{A_1}} = (0.85)(0.7)(4,000)(2)$

= 4,760 psi(32.82 MPa)

安全餘裕為:
$$MS = \frac{4,760}{1,978} - 1 = +1.4$$

此處定義安全餘裕為容許應力與實際應力之差對實際應力的比 值。當法規特別規範安全係數之要求時(例如 ANSI N14.6 與 NUREG-0612 之吊舉規定),在報告中則以安全係數(FS)來表示。其 他則以安全餘裕(MS)來表示其結構強度,當安全餘裕為正值時,表 示結構強度足以負荷該負載,即為安全之設計。

(B) 底部 Nelson studs 張力分析

當吊起混凝土護箱時,密封鋼筒的重量傳遞至底部基板(base plate)上,INER-HPS系統使用 Nelson studs 錨定在混凝土中,防止混凝土與基板分離。

設計時使用 32 支直徑為 1.9 cm(3/4 in)、長為 15.7 cm(6 3/16 in) 的 Nelson studs 錨定在混凝土護箱底部,每一個錨釘容許張力為 23.86 kip [21] (10.85 ton),總容許剪力為:

32 studs × 23.86 kip/stud = 763.5 kip (346.6 ton)

容許載重 Pu使用載重折減因子 2.0,此分析是依據製造商設計資料提供 [21]。

 $P_u = \frac{763.5 \text{ kips}}{2.0} = 381.8 \text{ kips} (173.3 \text{ ton})$

作用在混凝土底部基板上之載重有密封鋼筒及基座自重,其中密 封鋼筒自重為 76,000 lb(34,470 kg),但分析時保守選取為 95,000 lb(43,130 kg)。

密封鋼筒重+基座重=95,000+11,000=106,000 lb(48,124 kg)。

作用於基座底板總重為(含10%的動態負載因子)[54]:

 $106,000 \times 1.1 = 116,600 \text{ lb}(52,936 \text{ kg}) \circ$

安全餘裕為:

$$MS = \frac{381.8 \,\text{kip}}{116.6 \,\text{kip}} - 1 = +2.3$$

(C) 底座銲件之立管分析

此分析為評估基座支撐結構之標準設計模型在靜態載重下的行為。分析中,保守假設滿載之密封鋼筒之負載為 43,130 kg(95,000 lb),基座重 4,994 kg(11,000 lb),基座板厚為 5 cm(2 in),中間環板為 5 cm(2 in), 擋板厚 0.63 cm(0.25 in)。

使用 ANSYS 結構分析程式製作半對稱的基座模型(圖 6.2.6-4), 元素使用 8 節點實體元素(SOLID45)依 X-Z 平面在 UY 方向建立而成,所有載重依密度增加方式模擬,作用於模型上的總壓力 F。

 $F = 95,000 \text{ lb} \times 1.1 \text{ g}$

為了解基座內立管對底板的貢獻,以間隙元素 CONTAC52 模擬 上部圓錐柱(baffle)與上底板之接觸模式。執行 2 個模擬分析,第一 個假設底板與圓錐柱間有 0.63 cm(0.25 in)間隔,第二個假設無間隔。

表 6.2.6-3 為分析後節點最大應力與 SA-36 碳鋼容許應力的比較 表,依最大節點應力與薄膜容許應力 Sm。

如表 6.2.6-3 所示,兩項分析結果之最大節點應力都發生在立 管。當底板與圓錐柱間有 0.63 cm(0.25 in)間隙時最大節點應力為 70.43 MPa(10,214.3 psi),其安全餘裕(MS)為 0.89,當間隔為 0 時, 因一部分載重分配至圓錐柱,其最大節點應力為 56.71 MPa(8,225.5 psi),其安全餘裕(MS)為 1.35(安全餘裕定義為容許應力與實際應力 之差對實際應力的比值)。

上述兩項分析皆為所有載重情況下分析得最大節點應力值,其值 皆小於容許應力值。符合規範需求。

(D) 底部支撑氣墊分析

運送混凝土護箱時,規則使用 4 個氣墊放置於 4 個象限上,單一 氣墊尺寸約為 152.4 cm × 152.4 cm(60 in.×60 in),氣墊邊緣距離進氣 口 4 in 以上,其主要目的是方便千斤頂進出,當氣墊充氣後即可移 除混凝土護箱下之千斤頂。

氣墊最大抬昇高度為 15 cm(6 in),其中 7.5 cm(3 in)為充氣高度, 另 7.5 cm(3 in)為氣墊本身高度。氣墊系統包含4個氣墊,總容許載 重為 254,240 kg(560,000 lb),氣墊載重能力應該包含混凝土護箱最重 時乘以負載因子 1.1,計算式如下:

W = 330,000 × 1.1 = 363,000 lb MS = 560,000 / 363,000 -1 = 0.54

B. 頂部吊運評估[50]

混凝土護箱頂部有一組吊運組件,包含2個吊耳組件,每個吊耳 組件連接一個固定錨並埋入混凝土內。吊運時將插銷(pin)插入吊耳 中心圓孔,使用纜繩及吊具吊運裝有密封鋼筒之混凝土護箱。鋼製 吊耳相關組件以 ANSIN 14.6 為分析依據,混凝土中之吊舉用固定錨 分析是依 ACI-349 為分析依據。

頂部吊運評估時混凝土護箱最大載重(含滿載密封鋼筒)為 142,610 kg(314,400 lb),使用 147,225 kg(325,000lb),乘以動態載重因 子 1.1,每個吊耳組件中之插銷孔處所承受力為:(147,225 × 1.1)/4 = 40,487 kg,保守假設所受力為 40,600 kg(89,500 lb)。

頂部上舉運送分析項目包含:(A)吊耳容許降伏承載應力分析。 (B)固定錨頂板分析。(C)固定錨拉應力分析。(D)固定錨在混凝土內 之剪力分析。(E)各組件銲接分析。(F)底部 Nelson studs 張力及錨定 分析。(G)混凝土護箱底座分析。其中(A)吊耳容許降伏承載應力分析 與(C)固定錨拉應力分析屬於吊運設施的一部份,又因混凝土護箱在 結構意外分析章節中已獲證實當混凝土護箱於吊運過程中不慎吊落 時,仍不影響密封鋼筒之結構完整性,故以上(A)、(C)兩項分析的安 全係數在複置情況下分別需滿足 ANSI 14.6 的3倍及5倍的材料降 伏強度與極限強度的要求;其餘各項分析則須滿足正向安全餘裕的 要求。

(A) 吊耳容許降伏承載應力分析

依據文獻 AFFDL-TR-69-42[29] 9.3 節說明,吊耳破壞包含承載 破壞、剪力破壞、環部張力破壞,都將以容許負載係數 K 作為依據, 真實的材料破壞合併多種破壞模式,分析時都以 K 值作為代表其交 互作用的影響。

每一插銷孔受力:

P = $\frac{325,000(1.1)}{4}$ = 89,375 lb (40,554 kg) 分析時 P 使用 40,600 kg(89,500 lb)。

$$F_{bryL} = K \frac{a}{D} (F_{ty}) \quad (\text{for } e/D < 1.5)$$
$$= 43.13 \text{ ksi}$$

其中:

K =容許軸向負載係數(Allowable Axial Load Coefficient)

= 1.65
a = e-0.5D = 1.75 in(4.45 cm)
e =
$$0.5 * 7.6 = 3.8 in(9.65 cm)$$

D = $4.063 in(10.32 cm)$
e/D = $3.8/4.063 = 0.94 < 1.5$
F_{ty} = 降伏強度 = 60.0 ksi for ASME SA537, Class 2 碳鋼

插銷孔之降伏支撐力:

$$P_{bryL} = F_{bryL} \times D \times t = 350.47 \text{ kips} \quad (t = 2 \text{ in.})$$

安全係數為:

$$FS_y = \frac{350.47}{89.5} = 3.92 > 3$$

插銷孔之極限支撐力:

 $\begin{array}{ll} P_{bruL} &= 1.304 {\times} F_{bryL} {\times} D {\times} t & (if \quad F_{tu} {>} 1.304 \; F_{ty}) \\ &= 457.02 \; kip \end{array}$

其中:

$$\frac{F_{tu}}{F_{ty}} = \frac{80 \text{ ksi}}{60 \text{ ksi}} = 1.33 > 1.304$$

t = 2.0 in. (吊耳厚度)
 $F_{tu} = 極限張力強度 = 80.0 \text{ ksi 對 SA537, Class 2 碳鋼:}$

安全係數為:

$$FS_u = \frac{457.02}{89.5} = 5.11 > 5$$
 満足 ANSI N14.6 規範要求。

(B) 固定錨頂板分析

從吊耳經由固定錨頂板再到固定錨其受力路徑是對稱分佈的,而 且吊耳非常接近固定錨之軸向中心線。所以固定錨頂板上沒有明顯 的彎矩作用力,固定錨頂板的截面積比插銷孔處截面積大許多倍, 其材質與吊耳相同,故其張力強度是足夠的。

(C)固定錨拉應力分析

每一預埋板有2個吊把,預埋板之載重為:

 $P_{pl} = 2 \times 89,500 \text{ lb}(40,544 \text{ kg}) = 179,000 \text{ lb}(81,087 \text{ kg})$

每一吊把其垂直方向之載重為 89,500 lb,固定錨之降伏與極限 強度分別為 60 ksi 及 80 ksi,其受力面積為 15.2 in²(7.6 x 2) (9,804.4 mm²)。故固定錨受力為:

$$S = \frac{P}{A} = \frac{89,500 \ lb}{15.2 \ in^2} = 5,888 \ psi$$

故其安全係數為:

$$FS_{y} = \frac{60,000}{5,888} = 10.2 > 3$$
$$FS_{u} = \frac{80,000}{5,888} = 13.6 > 5$$

满足 ANSI N14.6 設計規定。

(D)固定錨在混凝土內之剪力及拉拔分析

<u>剪力分析</u>

混凝土因張力作用所需剪力面積依據 ACI 349 Sections 11 計算。 保守計算剪力面周長,不計面對 VCC 外表面周長,周長計算如

_

下:

$$p = 2 \times (11.4 - 2) + (9.6 - 2) + 2 \times \sqrt{2} = 29.23$$
 in (74.24 cm)

最大載重為 W = 89.5×2 = 179 kip.,有效剪力面積 $A_{shear} = p \times D$, 混凝土剪力強度保守取為 $2\sqrt{f'_c}A_{shear}$,依據 $V_u \leq \Phi V_n$ ($\Phi = 0.85$, V_u 為 外加負荷) 關係式求得所需剪力面積深度 D。

$$D = \frac{W}{\phi 2 \sqrt{f'_c} p} = 57.0 < 65.5 \text{ in}(166.37 \text{ cm})$$

其中 f'c = 4,000 psi(27.58 MPa)

真實剪力截面深度為166.37 cm,大於所需深度。

拉拔分析

依據 ACI-349 APPENDIX B,混凝土拉拔強度是以均佈張力作用 下,其作用面積以 45 度角圓椎體投影面積為準,有效面積必須排除 重複計算之面積。

由固定錨所產生之投影半徑為 166.37 cm(65.5 in),此值大於固定 錨對混凝土護箱之距離 146.1 cm(57.5 in)。固定錨的拉拔 45 度角圓錐 在混凝土護箱斷面的投影面積為混凝土護箱斷面積的 0.39 倍,保守 選取其投影面積為 0.25 倍之混凝土護箱的斷面積。

混凝土最大拉拔強度(Pd)定義如下:

 $P_{d} = 4 \times \phi \times \sqrt{f_{c}^{'}} \times A_{cp} = 4 \times 0.85 \times \sqrt{4000} \times 2390.7 = 514.1 \text{ kip}$ 其中: $\phi = 強度折減因子 = 0.85$ $f_{c}^{'} = 混凝土抗壓強度 = 4,000 \text{ psi} (27.58 \text{ MPa})$

$$A_{cp} = 固定錨應力錐投影面積 = 0.25 \times \frac{\pi(136^2 - 79.5^2)}{4}$$
$$= 2390.7 \text{ in}^2$$
固定錨最大載重為 W = 89.5×2 = 179 kip,安全餘裕為:
$$MS = \frac{514.1}{179} - 1 = +1.87$$

(E) 各組件銲接分析

因吊耳及固定錨皆採用全滲透銲接,其銲接程序皆依照 ANSI/AWS D1.1 [55]進行。當銲材滿足 ANSI/AWS D1.1 Annex M 與 銲道有效面積滿足 ANSI/AWS D1.1 2.3.2 規定時,依 ANSI/AWS D1.1 Table 2.3 中規定,全滲透銲接的銲道容許應力值可等同銲接母材的 容許應力值,在上述(A)(B)(C)小節中,已依 ANSI/AWS D1.1 規定進 行分析,且分析結果符合 ANSI N14.6 要求。

(F) 底部 Nelson studs 錨定分析

由頂部吊送時,密封鋼筒重量對混凝土護箱基座產生一張力作用 於 Nelson studs,混凝土護箱裝載 34,470 kg(76,000 lb)之密封鋼筒, 分析時保守使用 34,881 kg(77,000 lb)之重量,由 ANSYS 有限元素模 式分析得 Nelson studs 最大受力值。ANSYS 元素模式如下圖,圖中 為 8 分之1之對稱模型,基座之氣孔上方有 3 根 Nelson Stud,經對 稱後有 6 根 Nelson stud,密封鋼筒重量均勻分佈在基座 2 in 厚的上 板,力量傳遞至 Nelson studs 及基座底板,需考量 10 %動態載重因 子,此分析得 Nelson studs 最大受力值為 5,751 kg(12,667 lb)。

依據 ACI-349, 混凝土拉拔強度是以均佈張力作用下,其作用面積以 45 度角圓椎體投影面積為準,有效面積必須排除重複計算之面積。

Pedestal Finite Element Model

混凝土最大拉拔強度(Pd)定義如下: $P_d = 4 \times \phi \times \sqrt{f_c} \times A_{cp}$ 其中: $\phi = 強度折減因子 = 0.85$ $f_c' = 混凝土抗壓強度 = 4,000 \text{ psi}(27.58 \text{ MPa})$ $A_{cp} = \text{Nelson studs 應力錐投影面積}$

受力最大之 Nelson stud 位在進氣口上方處,6根 Nelson stud 有效作用面積 Acp 為 438.37 in²(2,828.2 cm²):

$$P_d = 4 \times 0.85 \times \sqrt{4000 \times 438.37} = 94,265 \,\text{lb} \cdot (42,796 \,\text{kg})$$

作用於 6 根 Nelson studs 上之總力為 13,010 kg(28,657 lb),安全餘裕為:

$$MS = \frac{94,265}{28,657} - 1 = +2.29$$

單一最大作用力為 5,751 kg(12,667 lb), 拉拔截面積為 760.4 cm² (117.86 in²), 拉拔強度(Pd)為:

$$P_s = 4 \times 0.85 \times 117.86 \times \sqrt{4,000} = 25,344 \text{ lb}(11,481 \text{ kg})$$

安全餘裕為:

$$MS = \frac{25,344}{12,667} - 1 = +1.0$$

因於先前底部上舉評估中已分析 32 支 Nelson studs 承受满載用 過核子燃料的密封鋼筒的重量時仍保有 2.3 的安全餘裕;在於頂部吊 舉時,相同的負載由 56 支 Nelson studs 承擔,故頂部吊舉時的 Nelson studs 軸向張力安全餘裕可達 4.0。

(G) 混凝土護箱底座分析

使用相同之 ANSYS 有限元素模型對基座(pedestal)進行分析,得 最大節點應力強度為 36.56 MPa(5301 psi)。A36 鋼容許應力 Sm 為 133.07 MPa(19,300 psi),參照表 6.3.8-1 中[56],密封鋼筒外殼的最高 溫度為 134.3 ℃(274 °F),此時安全餘裕為:

$$MS = \frac{133.07}{36.56} - 1 = 2.64$$

(3) 傳送護箱吊舉評估[45]

傳送護箱使用吊耳軸作為其吊運設備,吊耳軸與內外壁體使用全滲透銲接,其示意結構如圖 6.2.6-2;對含水之密封鋼筒且裝載於傳送護箱時 吊送的重量要求所作之評估須符合 NUREG-0612及 ANSI N14.6 中對非複 置吊運系統規定,另構件需依據 NUREG-0612 中應力等級規定。

傳送護箱吊舉評估分為下列四大項分析:

- A. 傳送護箱外壁體及吊耳軸分析。
- B. 保護環及保護環螺栓分析。
- C. 內外壁與底板銲接分析。
- D. 傳送護箱滑門、門軌與銲接分析。

A. 傳送護箱外壁體及吊耳軸分析

吊耳軸及相連接壁體之吊運是依據 NUREG-0612 [8] 及 ANSI N14.6 [9]。用 3D 有限元素模式評估全載重時之傳送護箱,因對稱架 構所以只需 1/4 傳送護箱模型(包含吊耳軸及週邊壁體),不含吊耳軸 上方之加勁板,內外壁體間之材料因非結構體所以被忽略,其中 SOLID95 及 SHELL93 元素分別模擬吊耳軸及壁體,由於 SOLID95 並沒有扭轉之自由度,但因設置垂直於壁體的 BEAM4 元素,使作用 於吊耳軸 SOLID95 的彎矩可由 BEAM4 傳遞到壁體的 SHELL93,如 圖 6.2.6-7。

傳送護箱總重(含滿載之密封鋼筒加水重)為 88,910 kg(196,000 lb),分析時保守使用 95,130 kg(210,000 lb)再加 10 %動態因子,因使 用 1/4 之模擬型式,故載重為 210,000 × 1.1 / 4 = 57,750 lb(26,161 kg),為作用於吊耳軸之向上力,邊界模式為兩束制之對稱面,垂直 力作用於底部以平衡吊耳軸向上力。
傳送護箱外部最高溫約 149 °C(300 °F),依 ASTM A-588 薄板材 料之規定,其降伏強度 Sy 為 45.6 ksi,極限強度 Su 為 70 ksi。吊耳 軸是使用 ASTM A-350 Grade LF2 所規定之碳鋼材料,依據 ASTM 標準衝擊試驗溫度為-45.6 °C(-50 °F)下之降伏與極限強度 Sy=219.9 MPa (31.9 ksi)及 Su=482.6 MPa(70 ksi) [25],其無延性過度溫度 (nil ductility transition, NDT) 是在-57 °C(-70 °F)~ -23.3 °C(-10 °F)溫度, 對於使用於-18 °C (0 °F)之吊耳軸與壁體是保守許多。

如圖 6.2.6-8 及圖 6.2.6-9 為傳送護箱外與吊耳軸接合節點位置, 表 6.2.6-4 到表 6.2.6-7 摘錄出內外壁體所受前 30 大應力受力節點, 表中除了有局部應力區域,其餘皆符合 NUREG-0612 與 ANSI N14.6 規定,對於非複置系統考量,要求其降伏與極限強度之安全係數須 大於 6 及 10 之數值;另外,局部應力規範是依據 ASME Code Section III, Article NB-3213.10 規定,節點受力須小於材料之降伏強度,詳細 內容如下。

局部應力發生在吊耳軸於內外壁體間,距離不連續面分別為內壁 0 cm(0 in)、外壁 5.08 cm(2 in),依照 ASME Code, Article NB-3213.10 規定,局部應力區域不能大於:

1.0√Rt

其中:

R: 最小之中間面半徑(midsurface radius)

t: 該區域之壁體最小厚度

內壁體的半徑為 87.0 cm,厚度為 1.905 cm;外壁體的半徑為 104.5 cm,厚度為 3.175 cm,經由局部應力區域規定計算得內外壁之 容許局部應力範圍分別為 12.8 cm 及 18.2 cm,此值大於局部應力發 生之距離,且受力小於材料降伏應力,滿足 ASME NB-3213.10 規範 之要求。

依據 NUREG 1536[61]第三章結構規定:吊耳軸須考量與內外壁 體間彎矩張力及平均剪應力,此處依線性分配得吊耳軸受 20.36 MPa(2,953 psi)彎矩張力及 10.02 MPa(1,453 psi)之剪應力[45],依 A350, Grade LF2 比較降伏與極限強度,分別得 10.8 (>6)與 23.7 (>10) 之安全係數。

B. 保護環及保護環螺栓分析

傳送護箱頂部有一保護環裝置,用以防止傳送護箱吊運不慎,致 使密封鋼筒移出傳送護箱造成輻射外洩意外。該保護環以螺栓固定 於傳送護箱頂部法蘭(flange)。在此事故分析中,原先由傳送護箱吊 耳軸承受的負載,將完全由保護環及螺栓承擔,故保護環及螺栓必 須有足夠的強度,以承受最重時的傳送護箱重量及外加10%的動態 負載。

保護環及螺栓詳細分析項目包含:(A)保護環分析。(B)密封鋼 筒與保護環間之接觸支撐應力分析。(C)保護環螺帽對保護環之剪應 力分析。(D)螺栓邊緣距離分析。(E)保護環螺栓應力分析。

(A) 保護環分析

經參考文獻 Young, W.C., "Roark's Formulas for Stress & Strain" [26]計算後,確認保護環是有足夠強度,如下圖所示說明各種物件受 力狀況,假設在均勻環狀線載重,距離中心軸 ro,外邊界固定,內邊 界為自由端。詳細分析結果參見本節附錄 6.2.B。

最大應力發生在固定環片外側,依據 ASME Sec.Ⅲ NB Level C 在異 常情況下,計算所得之應力(PL+Pb)須小於容許應力強度(1.8Sm 及 1.5Sy),依 ASTM A-588 得知在 300 °F 下容許應力強度為 1.8(23.3) = 41.94 ksi,大於計算所得之應力 15.25 ksi,滿足上述 ASME NB 規 定,其安全餘裕為:

$$MS = \frac{41.94}{15.25} - 1 = 1.75$$

(B) 密封鋼筒與保護環間之接觸支撐應力

Sbrg 為介於密封鋼筒與保護環片間之應力:

傳送護箱重量=102,000×1.1=112,200 lb (50,939 kg)

支撐環片與密封鋼筒接觸面積:

 $A = \pi (33.53^2 - 32.37^2) = 240 \quad in^2$

$$S_{brg} = \frac{112,200}{240} = 467.5 \,\mathrm{psi}(3.22 \,\mathrm{MPa})$$

依據 ASTM A-588 規定,於 300 °F 下容許承載應力 Sy 為 45.6ksi,承載應力小於容許應力,符合規定。

(C) 保護環螺帽對保護環片之剪應力

保護環片上之螺帽對保護環片之剪應力:

螺帽外徑=1.125 in(2.86 cm)

$$= 84.82 \text{ in}^2(547.2 \text{ cm}^2)$$

螺帽下保護環片之剪應力 Tp:

$$\tau_p = \frac{112,200}{84.82} = 1,322 \, psi(9.11MPa)$$

正常情形下容許剪應力為:

 $\tau_{\text{allowable}} = (0.6) (S_{\text{m}}) = (0.6) (23.3 \text{ ksi}) = 13.98 \text{ ksi}(96.39 \text{ MPa})$ 安全餘裕 = $\frac{13,980}{1,322} - 1 = 9.57$

(D) 螺栓邊緣距離分析

依"Manual of Steel Construction Allowable Stress Design",表 J3.5 "Minimum Edge Distance" [23],對螺栓孔最小邊距規定 1.9 cm(0.75 in) 之螺栓最小邊距為 2.54 cm(1 in)以上,使用 3.15 cm(1.24 in)符合規定。

$$\frac{77.04 - 74.56}{2} = 1.24 \quad in > 1.0 \quad in$$

(E) 保護環螺栓應力分析

考慮因人為不小心吊起密封鋼筒所產生對於保護環的作用力,分 析項目包含螺栓拉應力應力分析、螺栓之螺紋分析。

在異常情況下,螺栓容許應力為 2Sm。SA-193 Grade B6 螺栓, 在傳送護箱頂板之最大溫度值 49 °C(120 °F)下,此容許應力值為 54 ksi,安全餘裕為:

$$MS = \frac{54,000}{38,912} - 1 = +0.38 \qquad \text{满足規範要求}$$

因 SA-193 Grade B6 螺栓的材料強度較保護環片高,所以必須評 估板的螺紋剪應力,正常情形下容許剪應力為:

 $\tau_{\text{allowable}} = (0.6) \text{ (Sm)} = (0.6) (23.3 \text{ ksi}) = 13.98 \text{ ksi} (96.39 \text{ MPa})$ 安全餘裕為 = $\frac{13,980}{7,676} - 1 = +0.82$ 満足規範要求。

詳細分析結果參見本節附錄 6.2.C。

C. 內外壁與底板銲接分析

底板用全滲透銲接與內外壁體相連接,密封鋼筒之載重作用在屏 蔽門軌上的重力經銲接點將力轉到壁體,基於保守觀點,本分析假 設只有在壁體正下方才是有效傳遞載重之銲接長度。

連接內外壁之有效銲接長度大約:

lw = (27.33 in. + 46.0 in.)/2 in. = 36.66 in (93.1 cm).

應力發生在壁體與底板相連接處,重量為最重之密封鋼筒、水、屏 蔽門及門軌重,再加 10%動態荷重,總重為 W=102,774 × 1.1 = 113,451 lb(51,507 kg)。

門軌及屏蔽門載重傳遞至底板與內外壁體之銲接點,但內外壁體厚 度不相同,保守用 1.9 cm(0.75 in)之填角銲計算有效銲接面積:

有效銲接面積 = (36.66 in)(0.75 in + 0.75 in) × 0.707= 38.88 in²

$$\sigma_{\text{axial}} = \frac{P}{A} = \frac{(113, 451 \, lb)/(2)}{38.88 \, in^2} = 1,459 \, psi \quad (10.06 \, \text{MPa})$$

底板 (ASTM A-588) 之溫度為 204.4 °C(400 °F), 其降伏及極限應力 強度為:

Sy = 43.0 ksi (296.48 MPa) Su = 70.0 ksi (482.64 MPa) $FS_{y} = \frac{43.0}{1.46} = 29.5 > 6$ $FS_{u} = \frac{70.0}{1.46} = 47.9 > 10$

銲接設計符合ANSI N14.6及NUREG-0612之非複置系統之規定

D. 傳送護箱滑門、門軌與銲接分析[46]

傳送護箱之屏蔽門、門軌與銲接設計依 NUREG-0612 與 ANSI N14.6 之規定,對於非複置系統下,降伏與極限強度須有 6 及 10 的 安全係數。

屏蔽門軌承載水、屏蔽門及密封鋼筒之重量,屏蔽門為 19.8 cm(7.8 in)厚在門軌上移動,門軌高 20.78 cm(8.18 in)、厚 16.5cm(6.5 in),銲接於傳送護箱之底板面,材料為 A-588 與 A-350 Grade LF 2 低合金鋼。

銲道所受載重為 102,774 lb(46,659 kg),保守使用 W_{net} =110,000
lb(49,940 kg),以確保設計無誤。材料容許應力都選取在 204.4 °C(400
°F)下之值,這是正常狀況下最高溫,性質依 ASTM A-350 LF2 為在
45.6 °C(-50 °F)下做衝擊試驗[28],溫度範圍為-56.7 °C(-70 °F)至-23.3
°C(-10 °F)對 ASTM A-588 做非破壞檢驗,皆依保守設計方式。

傳送護箱滑門、門軌與銲接詳細分析項目包含:(A)門軌應力分 析,(B)屏蔽門應力分析,(C)門軌銲接評估。

(A) 門軌應力分析

均佈負載下,門軌之剪應力:

W=W_{net} × 1.1 = 110,000 × 1.1 = 121,000 lb

$$\tau = \frac{W}{A} = \frac{121,000 \, lb}{281.25 \, in^2} = 430.2 \, \text{psi} \, (2.97 \, \text{MPa})$$

其中:

A = 2.5 in. × 56.25 in. 長度/門軌 × 2 門軌= 281.25 in² (1,815 cm²)

於載重時軌道底部所受之撓曲應力為:

 $σ_b = \frac{6M}{bt^2} = \frac{6 \times 76,835}{56.25 \times 2.5^2} = 1,311 \text{ psi}(9.04 \text{ MPa})$ 其中:

M = a 點力矩
=
$$\frac{W}{2} \times L$$

= $\frac{121,000 \text{ lb.}}{2} \times 1.27 \text{ in.}$
= 76,835 in-lb

而

$$L = 2 - \frac{2 - (0.35 + 0.19)}{2}$$

= 1.27 in. ,力臂長度

底部截面之最大主應力:

$$\sigma = \left(\frac{\sigma_{\rm b}}{2}\right) + \sqrt{\left(\frac{\sigma_{\rm b}}{2}\right)^2 + \tau^2} = 1,440 \text{ psi (9.93 MPa)}$$

依據 ANSI N14.6 及 NUREG-0612 規定,計算降伏及極限強度之安全 係數:

$$FS_{y} = \frac{30,800 \text{ psi}}{1,440 \text{ psi}} = 21 > 6$$

$$FS_{u} = \frac{70,000 \text{ psi}}{1,440 \text{ psi}} = 49 > 10$$

符合 ANSI N14.6 與 NUREG-0612 規定。

(B) 屏蔽門應力分析

屏蔽門是由2片低合金鋼板夾一層 NS-4-FR 中子屏蔽物(一般會 於門邊銲上鋼棒,如此中子屏蔽物則被完全包覆)所組成,屏蔽門中 間 22.86 cm(9 in)厚,兩側滑軌處 17.14 cm(6.75 in)厚,於兩片門接合 處設計成凹槽型式。

屏蔽門端部與滑門軌道接觸區之剪應力為:

$$\tau = \frac{W}{2 \times A_s} = \frac{121,000 \, lb}{2 \times (49.2 \, in. \times 3.55 \, in.)} = 346 \, \text{psi} \, (2.39 \, \text{MPa})$$

其中:

 $A_s = 總剪截面積(total shear area), 9.02 cm(3.55 in) \times 125 cm(49.2 in)$ in)

假設中子屏蔽物及覆蓋板不承受剪力,所以屏蔽滑門之邊有效厚度為 9.02 cm。

簡支樑承受均佈載重下之彎矩 M 為:

 $M = 60,500 (X) - 1,695(X)(0.5 X) = 60,500 X - 847.5 X^{2}$

最大彎矩點位在 X=35.7in(90.7 cm)

$$M = 60,500 \text{ lb} \times (35.7 \text{ in.}) -847.5 \text{ lb/in.} \times (35.7 \text{ in})^2$$
$$M = 10.8 \times 10^5 \text{ in.-lb.}$$

於中間位置有最大撓曲應力 Gmax:

$$\sigma_{max} = \frac{Mc}{I} = \frac{10.8 \times 10^5 \text{ in - lb} \times 4.9 \text{ in.}}{1,353 \text{ in.}^4} = 3,911 \text{ psi} (27.0 \text{ MPa})$$

其中:

$$c = \frac{h}{2} = \frac{5.8 \text{ in.}}{2} + 2 \text{ in.} = 4.9 \text{ in.} (12.45 \text{ cm}) \cdot \text{IL}$$
$$I = \frac{bh^3}{12} = \frac{83.2 \text{ in.} \times 5.8^3 \text{ in}}{12} = 1,353 \text{ in}^4.$$

依據 ANSI N14.6 與 NUREG-0612 規定計算降伏及極限強度之安全係 數:

$$\frac{30,800 \text{ psi}}{3,911 \text{ psi}} = 7.9 > 6$$

 $\frac{70,000 \text{ psi}}{3,911 \text{ psi}} = 17.9 > 10$
符合 ANSI N14.6 及 NUREG-0612 規定。

(C) 門軌銲接評估

滑門軌道是以 1.6 cm(0.625 in)之填角銲連結於傳送護箱底板,假 設所有載重皆由內部之銲道承受,計算所有應力值。

P =
$$\frac{W}{2} = \frac{121,000 \, lb}{2} = 60,500 \, lb \,(27,467 \, \text{kg})$$

計算內部銲接總彎矩:

總受力為:

 $F_i = F_o + P = 17,074 \text{ lb} + 60,500 \text{ lb} = 77,574 \text{ lb}(35,219 \text{ kg})$

內部銲接有效面積為: $0.625 \text{ in} \times 0.707 \times 56.25 \text{ in} = 24.86 \text{ in}^2$ (160.4 cm²)

內部銲接剪應力:

$$\tau = \frac{77,574 \, lb}{24.86 \, in^2} = 3,120 \, \text{psi}(21.51 \, \text{MPa})$$

依據 NUREG-0612 規定計算降伏及極限強度之安全係數:

 $\frac{30,800 \text{ psi}}{3,120 \text{ psi}} = 10.0 > 6 \qquad (對降伏強度)$ $\frac{70,000 \text{ psi}}{3,120 \text{ psi}} = 22.4 > 10 \qquad (對極限強度)$

符合 NUREG-0612 規定。

2. 正常貯存狀況分析

本節使用 ANSYS,針對提籃、密封鋼筒及混凝土護箱以有限元素模式分 析之,由於這些個別組件互相無交接且可自由膨脹,故各模式不相連結。

(1) 密封鋼筒及提籃分析[43]

由於 INER-HPS 系統之密封鋼筒係完全參照 NAC UMS 系統 [2],而原 UMS 系統之密封鋼筒係適用於 PWR 及 BWR 燃料,共有 五種大同小異之設計,其中三種為 PWR,二種為 BWR,經查其第 五種(class 5)密封鋼筒設計涵蓋核一廠之待運貯存燃料,本節分析係 根據 NAC UMS 系統之涵蓋範圍 (bounding condition)進行,其分析 係自五種設計中選取最保守之各組件或組件組合,例如熱傳狀況是 以具最大熱梯度的設計為涵蓋條件,各項結構分析的涵蓋條件整理 如表 6.2.6-8。對於密封鋼筒及提籃共進行 11 項分析,分述如下:

- 1. 密封鋼筒熱應力分析
- 2. 密封鋼筒靜重分析
- 3. 密封鋼筒正常貯存時最大內壓力分析
- 4. 密封鋼筒吊運分析
- 5. 密封鋼筒負載組合
- 6. 密封鋼筒及提籃疲勞評估
- 7. 密封鋼筒壓力試驗
- 8. 提籃承載圓盤評估
- 9. 提籃銲件評估
- 10. 燃料管分析
- 11. 密封鋼筒封銲評估

A. 密封鋼筒熱應力分析

密封鋼筒之有限元素模型是以 ANSYS SOLID45 元素建立,基於 密封鋼筒之對稱性質,故建立半個(180°) 密封鋼筒模型,包括鋼筒 外殼、底板、結構上蓋及屏蔽上蓋。結構上蓋與屏蔽上蓋的接觸處 軸方向自由度(UY),係以 COMBIN40 接合元素模擬,間隔環(spacer ring)則以 COMBIN40 gap/spring 元素模擬,該環在軸向與屏蔽上蓋 底部外徑相接。結構上蓋及屏蔽上蓋與密封鋼筒外殼在銲接點下方 之連接,則以 CONTAC52 元素模擬,CONTAC52 的『gap』尺寸在 ANSYS 程式中則以『Real Constant』定義;由於幾何條件造成『gap』 較大,故在荷重狀態下『gap』保持開放。結構上蓋與屏蔽上蓋及間 隔環之『gap』為 2.54×10⁻¹⁰ m (1×10⁻⁸ in),所有『gap』及間隔環 之勁度考量收斂性定為 1.75×10¹⁰ N/m (1×10⁸ lb/in)。分析模型如 圖 6.2.6-10 至 6.2.6-12。

由於對稱的關係,在 Z 方向所有的節點皆被束制;另底板之中 央節點之 Y 方向被束制以維持穩定,密封鋼筒中心線所有節點之 X 方向皆被束制,座標系統如圖 6.2.6-10 所示。

為進行保守的設計分析,該模型結合密封鋼筒的幾何及載重限 制,即以最短的密封鋼筒及最小的銲接尺寸(1.905 cm 即 0.75 in 結構 上蓋; 0.9525 cm 即 0.375 in 屏蔽上蓋)結合最重的燃料裝載,故每個 承載圓盤及銲接處的載重為最大。

密封鋼筒之有限元素熱應力分析所採用的溫度涵蓋所有密封鋼 筒在異常貯存狀況(環境溫度41°C(106°F)及-40°C(-40°F))及傳送情 況之溫度梯度。在執行熱應力分析之前,使用貯存及傳送情況之熱 傳分析的溫度資料決定穩態溫度分佈[40]。這是將密封鋼筒模型之 SOLID45 結構元素轉換成 SOLID70 熱傳元素,並且使用熱傳分析所 得到的材料性質。為進行穩態熱傳分析,在模型中六個主要位置輸 入節點溫度值。其輸入位置及溫度如表 6.2.6-9。

用以決定容許應力值的溫度值,為涵蓋密封鋼筒組件在貯存及運送情況最大溫度歷程。其輸入位置及溫度如表 6.2.6-9。

藉由穩態熱傳導問題解,可求得密封鋼筒模型各節點上的溫度。 各種狀況下,軸向與徑向之最大溫度變化。 當溫度分佈求得後,以 SOLID70 元素轉換回 SOLID45 結構元素 以進行熱應力分析,每個角度位置(angular location)(共 19 個角 度位置)之 16 個軸向截面(section)之應力值分析結果如表 6.2.6-10, 應力分析位置示意圖如圖 6.2.6-13。

B. 密封鋼筒靜重分析

密封鋼筒之靜載重結構分析(靜載重為密封鋼筒自身重量),係利 用本節中 A 項分析所建之有限元素模式進行,該節計算所得之溫度 分佈,將用以決定此章節中靜載重結構分析所需之材料機械性質。 核子燃料及提籃組件並無另行建立模式,而以對底板之上表面施以 相當的平均分佈壓力取代。除了本節中 A 項分析所述之束制條件, 所有底板底部之節點均加以束制。分析時保守以最小的銲接尺寸為 1.9 cm (0.75 in)結構上蓋; 0.95 cm (0.375 in) 屏蔽上蓋,結合最重 的燃料裝載(原 UMS FSAR 所定義之 BWR Class 5)為基準,並在軸向 (Y)施加 1g 的加速度以模擬靜載重。

密封鋼筒靜重之 Pm 及 Pm+Pb 之分析結果,分別如表 6.2.6-11 及表 6.2.6-12 所示,表中顯示每個角度位置之 16 個軸向截面(每一 個軸向截面有 19 個角度位置)之最大應力值分析結果。分析結果顯 示密封鋼筒承受自身重量時鋼筒中各處的應力值非常低。

屏蔽上蓋支撐環的靜重分析,則以傳統計算方式進行。支撐環的 材質為 ASTM 304 不銹鋼,與密封鋼筒外殼內表面銲接以支撐結構 上蓋;保守起見,此部位以溫度 204.4 °C(400 °F)決定材料容許應力。 作用在支撐環的總重量 W,保守估計為輔助蓋板(auxiliary lid)與屏蔽 上蓋的重量和,並考慮 10 %負載因子以包含所有正常操作狀況之負 載分析需求。支撐環所承受之應力為銲道至密封鋼筒外殼處之承載 及剪應力。

$$\sigma_{bearing} = \frac{W}{area} = \frac{14,200 lb}{102.6 in^2} = 138 \, psi \, (951.6 \, \text{KPa})$$

A =
$$\pi/4(D-(D-2t)^2)in^2 = 102.6 in^2 (662 cm^2)$$

A-479,304 不銹鋼之降伏強度 Sy = 20,700 psi(1.42×10² MPa), 根據 ASME Code, Section III,NB 之容許承載應力為 1.0Sy,故最大 計算所得應力值應小於此法規要求。

$$MS = \frac{20,700 \text{ psi}}{138 \text{ psi}} - 1 = 149$$

支撑環附件銲接處為 0.3175 cm (1/8 in) 部分滲透銲,承受之剪 力來自於結構上蓋、屏蔽上蓋及上蓋支撑環重量,總有效銲接面積 為 A_{eff} = 0.707×0.125 × π× 65.81 in. = 18.27 in²(117.9 cm²),平均剪應 力為:

$$\tau_w = \frac{W}{A_{eff}} = \frac{14,200 lb}{18.27 in^2} = 777 \, psi \, (5.34 \text{ MPa})$$

其銲接處容許應力為銲接材料之正向拉應力的 0.3 倍[22], E308-XX 銲材之正向拉應力為 80,000 psi (5.52×10² MPa), SFA-5.4 Table 5 [28], 然而為保守起見以母材之 Sy 及 Su 做為計算基準。

$$MS = \frac{0.3 \times 20,700 \text{ psi}}{777 \text{ psi}} - 1 = 7.0$$

C. 密封鋼筒正常貯存時最大內壓力分析

密封鋼筒正常貯存時最大內壓力結構分析,係利用本節中 A 項 分析所建之有限元素模式求得溫度分佈,以獲得密封鋼筒中各位置 相對應於不同溫度的材料機械性質。正常貯存時最大內壓力 15 psig(103,423 Pa)作用於密封鋼筒外殼、屏蔽上蓋及底板內表面,而經 保守考慮密封鋼筒在常態下之計算所得壓力為 9.7 psig(66,880 Pa)。

於 15 psig 內壓力狀況下之 Pm 及 Pm+Pb 分析結果,分別如表 6.2.6-13 及表 6.2.6-14 所示,表中顯示 16 個軸向截面之最大應力值分 析結果(共 19 個角度位置)。分析結果顯示,密封鋼筒於 15 psig 內壓力時,鋼筒中各處的應力強度因子在於頂部與底部彎角處有相 對高值,但比對於材料降伏強度時,該受力依然輕微。

D. 密封鋼筒吊運分析

密封鋼筒最大內壓力結構分析,係利用本節中 A 項分析所建之 有限元素模式及求得溫度分佈與相對應的材料機械性質。位於結構 上蓋之節點皆加以束制,以模擬正常吊運狀況下三個吊運點(lift points),並施加 1.1 g之軸向加速度,其包含 10% 動態負載因子。由 於模式是半個密封鋼筒,故三個吊運點在模式上為一個吊運點位於 對稱平面之節點,另一個吊運點位於距前述吊運點 120°處之節點 上,兩個吊運點沿著結構上蓋頂部螺栓直徑在軸向束制。此外,所 有沿上蓋及底板中心線之節點在徑向皆束制,對稱平面上所有節點 在其垂直方向加以束制。

最大內壓力狀況下之 Pm及 Pm+Pb分析結果分別如表 6.2.6-15 及 表 6.2.6-16 所示,表中顯示 16 個軸向截面之最大應力值分析結果(共 19 個角度位置)。分析結果顯示密封鋼筒在吊運時,鋼筒各處材料 受力值仍遠離材料降伏強度。

E. 密封鋼筒負載組合

密封鋼筒之熱應力、靜重、最大內壓力及吊運載重之負載組合結 構分析,係利用本節中 A 項分析所建之有限元素模式及求得溫度分 佈與相對應的材料機械性質。施加之載重如本節 A~D 項分析所述。 最大內壓力 15 psi(103,423 Pa)及 1.1 g 正向軸加速度作用於模式,兩 個相距 120°之吊運點沿著結構上蓋頂部螺栓直徑在軸向束制。此 外,所有沿上蓋及底板中心線之節點在徑向皆束制,對稱平面上所 有節點在其垂直方向加以束制。

最大內壓力狀況下之 Pm、Pm+Pb及 Pm+Pb+Q 之分析結果分別如 表 6.2.6-17 至表 6.2.6-19 所示,表中顯示 16 個軸向截面之最大應力 值分析結果(共 19 個角度位置)。

如表 6.2.6-17 至表 6.2.6-19 所示,密封鋼筒之負載組合應力安全餘裕皆維持正值。

F. 密封鋼筒及提籃疲勞評估

本節目的在評估系統組件是否有進行疲勞分析之必要,循環運作 之組件分析要求如 ASME Section III, NB 3222.4 (密封鋼筒部分)及 NG-3222.4 (提籃部分)所規定,依 AISC 所設計之組件,則以 Manual of Steel Construction, Table A-K4.1 [23]內容為指引。

在貯存狀況下密封鋼筒是位於混凝土護箱內,該護箱為有 71.2 cm (28 in)厚鋼板屏蔽之鋼筋混凝土結構,設計用以長期貯存密封 鋼筒。內襯鋼板不承受往復性負載,熱流變化僅止於少量環境溫度 的改變,又因護箱具相當大的熱容量,故少量溫度變化造成的熱疲 勞應力不顯著,內襯無需進一步的疲勞分析。

ASME 對於往復性負載分析分為六種狀況,如果符合這些狀況 則不需進一步作疲勞分析,對於這六種狀況的評估如下:

狀況一:大氣至操作壓力循環

此狀況不適用。密封鋼筒一旦密封後,即在其運轉壽命內保持此 狀態,無大氣至操作壓力循環。

狀況二:正常壓力變動

此狀況不適用。密封鋼筒運作非循環性,故無顯著循環壓力變動。

狀況三:溫度變化---啟動及停機

此狀況不適用。INER-HPS 系統為一被動、長期貯存設施,無經 歷循環性啟動及停機作業。

狀況四:溫度變化--正常及異常狀態

ASME中明定兩相鄰點溫度差△T若小於下列公式計算所得溫度 差,則該組件不經歷溫度循環:

$$\Delta T = \frac{S_u}{2E\alpha} = 58^{\circ}F (32.2 \ ^{\circ}\text{C})$$

對 304L 不銹鋼而言,

S_u = 28,200 psi(1.94×10² MPa)由 cycles < 10⁶疲勞曲線而來 E = 26.5×10⁶ psi(1.83×10⁵ MPa), 204.4 °C(400 °F)時彈性模 數

 $\alpha = 9.19 \times 10^6$ in/in -°F

由於密封鋼筒及混凝土護箱具有相當大之熱量,故不會發生 ΔT 超過 32.2°C(58°F)的情況。

狀況五:不相似材料之溫度差

密封鋼筒及其組件包含許多不同材料,且各組件設計皆考慮其熱 膨脹,因此排除熱應力未分析之狀況。

狀況六:機械載重

此狀況不適用。在貯存狀況下,無循環載重作用於密封鋼筒及混 凝土護箱,故無需進一步分析。

6.2.6-35

综合以上所述,密封鋼筒及提籃不須進行疲勞分析。

G. 密封鋼筒壓力試驗

密封鋼筒之設計及製造皆依循 ASME NB 子章節之要求,並在密 封鋼筒外殼銲接後,依 NB-6220 要求進行 18.75 psig 之水壓試驗。密 封鋼筒外殼設計壓力為 15 psig,而設計壓力是涵蓋正常及異常貯存 狀況下壁體所受之壓力上限值。

ASME Code, Subsection NB-3226 對於壓力試驗的要求如下:

(A)Pm 在測試溫度下不得超過 0.9Sy。為簡化計算過程,表 6.2.6-13 及表 6.2.6-14 由 15psig(103,500 Pa)內壓造成之應力強度,將以比 例換算方式計算壓力試驗之應力強度,由表 6.2.6-13 查出最大主 應力強度 Pm = 2.24 ksi。密封鋼筒材料為 ASME SA-240, Type 304L 不銹鋼,在小於 93.3 °C(200 °F)測試溫度下設計熱負載為 14 kW,由於降伏強度隨溫度上升而下降,故 93.3 °C(200 °F)時之降 伏強度為最保守之狀況。

 $(P_m)_{test} = (27.2/15)(2.24 \text{ ksi}) = 4.1 \text{ ksi}(28.29 \text{ MPa}) < 0.9 \text{ Sy} = 0.9$ (21.4 ksi) = 19.3 ksi(133.17 MPa)

測試壓力符合此要求。

(B) 當 P_m < 0.67S_y時, P_m+P_b應小於或等於 1.35S_y。由表 6.2.6-14 查 得 P_m+ P_b = 7.36 ksi(50.78 MPa),則: (P_m+ P_b)_{test} = (27.2/15)×(7.36 ksi) = 13.3 ksi(91.77 MPa) ≤ 1.35S_y = 28.9 ksi (1.35×21.4 ksi)(199.41 MPa)

測試壓力符合此要求。

- (C)外壓力不得超過 NB-3133 所規定之值的 135 %。進行壓力試驗時,密封鋼筒外部處於大氣壓力狀態,故此項要求符合。
- (D)根據NB-6221中,1.25倍設計壓力氣壓試驗要求,應計算所有應 力及與(A)(B)(C)項規定比較。除非真實水壓試驗壓力超過1.25倍 設計壓力6%以上,否則這些計算所得應力及(E)項疲勞評估不需 重新計算。

雖然真實測試壓力(20.3 psig)(140,070 Pa)稍高於 1.25 倍設計壓力 (18.75 psig)(129,375 Pa),然而分析中所用的應力與測試壓力成比 例關係,如此,測試壓力所造成的應力皆可經由此種評估方式獲 得。

(E) 根據 NB-6220,除了前 10 次水壓試驗,其餘測試都須考慮在組 件疲勞評估中。

由於密封鋼筒不重複使用,且水壓試驗只進行一次,所以水壓力 試驗無須考慮在疲勞評估分析中。

密封鋼筒的水壓測試均遵循所有 NB-3226 的準則,而因為氣壓測 試壓力較低(1.2×設計壓力或 1.2×15 psig = 18 psig)(124.2 KPa),其 測試結果可涵蓋依據 NB-6220 所要求的氣壓測試結果。

H. 提籃承載圓盤評估[52]

提籃主要組件如圖 6.2.6-14,在正常狀況下,承載圓盤在軸向僅 受其自重及有 6 處受繫桿(tie rod)/間隔環(spacer)支撐,在密封鋼筒吊 運過程中,吊運負載為靜重之 10 %。提籃係以 ANSYS 進行分析, 除靜重及吊運負載(10 %靜重)之外,正常、異常(41.1 °C(106 °F)至-4.4 °C(-40 °F)周圍溫度)及運送狀況下所引發的熱應力也加以考量。其應 力相關要求係根據 ASME Code, Section III, Subsection NG 規定,在正常狀況下,其容許應力等級為 Level A。

應力類型	正常 (Level A) 容許應力
Pm	S _m
$P_m + P_b$	1.5 S _m
P+Q	3.0 S _m

提籃承載圓盤之有限元素模式如圖 6.2.6-15 所示,該模式是以 3-D SHELL63 元素建立單一 1.6 cm (5/8 in)厚的承載圓盤,唯一載 重為 1.1 g 慣性負載,其包括正常狀況下垂直平面方向(global Z)靜重 及吊運負載,模式 6 個繫桿/間隔環位置垂直平面方向(global Z)皆加 以束制。

若提供溫度數據及熱膨脹係數,此模式亦可供分析熱膨脹效應。 將 SHELL63 結構元素轉換成 SHELL57 熱傳元素,可進行熱傳分析 以求得其溫度分布,圓盤中央節點為最高溫 371 °C(700 °F),圓盤外 徑圓周邊緣節點為最低溫 149 °C(300 °F),則溫度差 ΔT = 222.2 °C(400 °F),此為保守設定之溫度梯度,其它節點溫度則由穩態熱傳 導模式解出。在正常貯存狀況下,其評估容許應力所用之溫度設定 為 426.7 °C(800 °F)。

為評估承載圓盤最關鍵的區域,將以一系列的截面(圖 6.2.6-16) 進行分析。列出所有繫帶(ligament)在承載圓盤平面的截面編號,以 及其對應點1、點2之標號及座標。

正常狀況下,承載圓盤應力評估結果如表 6.2.6-20 及表 6.2.6-21,表中列出前40高的Pm+Pb、P+Q及MS。ASME Code, Section III, Subsection NG中,在指定節點溫度下 SA533碳鋼的Level A, Pm+Pb、P+Q容許應力分別為1.5Sm及3.0Sm。因為在正常狀態下承載 圓盤平面並不受力,故基本上正常狀況下之Pm為0。

正常狀況下之提籃銲道應力以有限元素法進行評估,除了銲件本 身重外,另加上吊運時10%動態負載,故在垂直銲件分析模式平面 方向有1.1g加速度。銲件熱應力分析方式同H節承載圓盤分析,頂 部銲件中心點溫度為273.9°C(525°F),外徑邊緣溫度為107.2°C(225 °F);底部銲件中心點溫度為246.1°C(475°F),外徑邊緣溫度為93.3 °C(200°F),所有貯存時的正常狀態與異常狀態的徑向應力梯度,均 可由此保守的數據中來建立。

在提籃分析中,貯存狀態下的底部與底部銲件評估都是結合熱膨 脹應力的結果。該銲件是由1 in 厚 304 不銹鋼製成,除承受自重外, 另承受最多56 束燃料管,因頂部及底部銲件銲接的支撐支架(rib)位 置不同,故分別以SHELL63 元素建立有限元素模式,頂部及底部銲 件模式如圖 6.2.6-17 及圖 6.2.6-18 所示。分析模式中,在端部撞擊 (End-impact)時,燃料管的重量傳遞至其底部,造成之負載平均分布 於燃料管底部的節點上,所造成最大應力強度及安全餘裕(MS)如表 6.2.6-22 所列。注意該節點應力強度是經由保守評估而來。因為銲件 平面並不受力,故基本上正常狀況之 Pm 為零。銲件的安全應力準則 參照 ASME Code Section III, Subsection III, NG。

J. 燃料管分析[41]

在正常貯存狀況下,如圖 6.2.6-19 之燃料管僅承受本身重,燃料 組件雖有可能因放置角度而傳遞部份重量於燃料管上,但因分析結 果顯示(如下段)其安全餘裕甚大,且燃料管亦進行側傾分析(本章六 節)故此處假設由密封鋼筒底板支撐。由於燃料管可自由地軸向及徑 向膨脹,故熱應力可不考慮;吊運負載必須考慮以10%靜重計算。

最重的燃料管大約重 45.3 kg(100 lb),考慮承受 1.1 g 的重力 負載,最小截面積為:

Area = $(5.996 \text{ in})^2 - (5.9969 \text{ in} - 2 \times 0.048 \text{ in})^2 = 1.14 \text{ in}^2(7.35 \text{ cm}^2)$

則燃料管最大承載壓應力大約 96 psi(100 lb × 1.1 / 1.14 in²)(662,400 Pa),另燃料管壓應力不得超出材料降伏強度,確保在貯 存狀態燃料管的位置不會改變,而 304 不銹鋼在 399 °C(750 °F)下的 降伏應力為 17,300 psi(1.19 × 10⁸ Pa),故其 MS = 17,300/96 – 1=179, 燃料管的安全餘裕相當充裕。

K. 密封鋼筒封銲評估[44]

密封鋼筒最小封銲尺寸為結構上蓋與密封鋼筒外殼間之 1.9 cm (0.75 in) 槽銲(Groove weld),由於銲材(E308)強度高於母材(304 或 304L 不銹鋼)強度,根據 NRC ISG(Interim Staff Guidance)-15, Rev.0 之內容,評估此銲道時必須考慮 0.8 之應力折減係數。

密封鋼筒封銲應力係根據 ASME Code, Subsection NB 所允許之 截面應力評估,相對應之評估區域如圖 6.2.6-13 截面編號 13,該截 面區域之 Pm、Pm+Pb、P+Q 及容許應力詳見表 6.2.6-17 至表 6.2.6-19。 容許應力考慮 0.8 折減係數時,相關強度及安全餘裕整理如下:

應力類型	分析應力強度	0.8×容許應力強度	安全餘裕
	MPa (ksi)	MPa (ksi)	MS
Pm	13.10 (1.90)	92.11 (13.36)	6.03
$P_m + P_b$	18.68 (2.71)	138.18 (20.04)	6.40
P+Q	33.85 (4.91)	276.34 (40.08)	7.16

分析結果顯示評估密封鋼筒銲道時,考慮 0.8 之應力折減係數後,其安全餘裕仍然相當充裕。

密封鋼筒封銲瑕疵尺寸規定

密封鋼筒封銲是以與母材(304L 不銹鋼)相容之銲料組成,須進 行容許瑕疵尺寸分析,其結果用以決定最小銲道臨界瑕疵尺寸,並 且該瑕疵尺寸必須是非破壞檢測所能辨識之尺寸。由於 304L 不銹鋼 內部韌性關係,故應用J積分(J-integral/tearing)分析模組進行臨界瑕 疵尺寸分析。

此分析中的安全係數定義於 ASME Code, Section XI。

此容許瑕疵尺寸評估位置為結構上蓋銲道,評估時以該區域徑向 應力為主,並依 ASME Code, Section XI 規定,在正常狀態下取安全 係數為 3。為了定義出瑕疵評估的應力值,考慮如圖 6.2.6-13 編號 13 區域,由表 6.2.6-10 至 6.2.6-19 內編號 13 區域之 Sx 查出最大徑向拉 應力為 1.57 ksi(10.82 MPa)。

考量3倍的安全係數,保守以11.4 ksi(78.7 MPa)應力進行後續評 估,則360°環繞圓周向銲道的臨界瑕疵尺寸為1.12 cm (0.44 in)。 若考慮不同瑕疵走向(徑向或水平),則參考表 6.2.6-10 至 6.2.6-19 內編號13 區域之 Sz及 Sy部份。表中最大拉應力值(Sz及 Sy)為1.77 ksi(12.20 MPa),其狀況亦包含在11.4 ksi(78.7 MPa)徑向應力分析結 果中。

由於 360°圓周向銲道的計算可涵蓋徑向或水平走向的局部銲道 瑕疵;再者,結構上蓋的封銲銲道以漸層式 PT(Progressive PT)執行 銲道檢驗,過程中不超過 0.95 cm(3/8 in)熔填厚度即須執行一次 PT 檢驗,可確保銲道中的裂縫深度小於臨界裂縫深度(1.12 cm)。

304L 不銹鋼結構上蓋可能由 SA-182 鍛造而成,或由 SA-240 板 材製成,由於前者之極限及降伏強度不小於後者,故此銲道臨界瑕 疵尺寸評估適用於以上兩種材料。

(2) 混凝土護箱分析[47]

本節說明正常狀況下混凝土護箱由靜負載、活負載、熱負載所造成 之應力,護箱鋼底座則在本章 二、(六).1節分析。藉由本節所建立的模 式,可針對護箱在正常、異常及意外狀況下最大熱負載進行分析。本節分 析護箱在32°C(90°F)下的鋼筋及混凝土應力,並保守採用較熱流分析出 之溫度梯度大之溫度梯度進行分析。負載組合計算所得應力值列如表 6.2.6-23,混凝土護箱之應力值與 ACI-349-85 要求之比較如表 6.2.6-24。以下分 A.靜負載, B.活負載及 C.熱負載說明。

A.靜負載

靜負載分析所用重量為空護箱總重,非僅計算混凝土部份重量。 混凝土護箱靜重僅由其底部混凝土表面承受,所受之壓應力為:

σ_v =-W/A = -26.1 psi(-179,986 Pa) (壓應力)

(計算載重組合時,保守起見用 30 psi(206,880 Pa))

W = 250,000 lb (113,500 kg) (實際重量 238,400 lb(108,140 kg))

OD = 136 in (345.4 cm)混凝土護箱外徑

ID = 79.5 in (201.9 cm)混凝土護箱內徑

A = π (OD²-ID²)/4 = 9,563 in² (61,697 cm²)

B. 活負載

混凝土護箱所受之最大活負載,來自於操作時置於其上之滿載傳 送護箱。保守起見,假設載重皆由混凝土部分承受,鋼內襯完全不 承受負載,而密封鋼筒及其組件負載則傳遞至護箱內的鋼支撐,故 混凝土只承受垂直方向壓應力。

W ≈ 196,000 lb (滿載之傳送護箱重量)

D = 136 in (345.4 cm)混凝土護箱外徑

ID = 79.5 in (201.9 cm)混凝土護箱內徑

A = $\pi(OD^2-ID^2)/4 = 9,563 \text{ in}^2(61,697 \text{ cm}^2)$

混凝土護箱底部壓應力為:

σ_v = W/A = -20.5 psi ≈ -25 psi (-172,400 Pa) (壓應力)
 (計算載重組合時,保守起見用 25 psi (172,400 Pa))

C. 熱負載

混凝土護箱熱應力分析係以 3-D 有限元素模式進行(圖 6.2.6-20),該模式以 SOLID45、LINK8 及 CONTAC52 元素建立, SOLID45 代表混凝土部份,LINK8 代表垂直及圓周方向鋼筋。鋼筋 模式如圖 6.2.6-21,內徑有 36 組垂直鋼筋,外徑則有 56 組垂直鋼筋, 模式為 1/56 圓周(6.42°),但內徑鋼筋元素數較少,故其 LINK8 元素面積皆乘以 36/56。位於外徑的垂直 LINK8 元素代表六號鋼筋 (直徑 1.9 cm (0.75 in),截面積為 2.84 cm² (0.44 in²)),LINK8 元素亦用於圓周方向代表該方向鋼筋,內徑垂直相距 20.3 cm (8 in) 置一元素,內徑垂直相距 10.2 cm (4 in)置一元素。模型中 SOLID45 元素的節點位置亦配合鋼筋位置,使得 LINK8 元素可以放在正確的 位置上。

為了使鋼筋包含混凝土的拉力勁度(tension stiffness),SOLID45 元素的節點在特定水平面上(模式在1/4、1/2及3/4軸向長度處), 以0.25 cm (0.1 in) 垂直距離分隔,再以CONTAC52元素連接以傳 遞壓應力。LINK8 元素由頂端至底部皆為連續。結構之邊界條件如 圖 6.2.6-22,模式在角度0°邊界在圓周方向加以束制,6.4°邊界 LINK8 元素延伸出模式外部份在圓周方向亦加以束制,該邊其它節點則連 接 CONTAC52 元素承受壓應力。此邊界條件為模擬混凝土在每一個 軸向 6.4°平面完全斷裂。

進行熱負載分析時,正常狀況下護箱混凝土壁最大熱梯度為 15.2 °C(27.4 °F),穩態 3-D 熱傳導分析使用 32 °C(90 °F)時表面溫度邊界 條件,沿著鋼內襯及混凝土殼之溫度,並考量 1.275 之負載因子,分 析時溫度梯度保守採用 45.6 °C (82.13 °F)(含 1.275 之負載因子)。

熱傳分析完成後,模式轉換為結構模式進行熱應力分析,前者求 得之節點溫度即為結構模式之熱負載溫度邊界條件。分析中假設混 凝土護箱的拉應力皆由鋼筋承受,壓應力皆由混凝土承受,鋪設於

6.2.6-43

混凝土護箱內之垂直及環狀鋼筋皆已納入分析模型中,分析所用的 溫度差皆大於實際熱傳分析結果之溫度差,故是保守分析。

圓周向鋼筋之應力視其在護箱長度方向位置而不同,最大圓周向 拉應力 6,423 psi(44.29 MPa)發生在外圈鋼筋距底部 143.3 cm 處。

垂直鋼筋之應力視其在護箱徑向位置而不同,最大垂直向拉應力 5,338 psi(36.81 MPa)發生在外圈鋼筋距底部 356.4 cm 處。

ASTM A-706 鋼筋之最大容許應力為 F_y = 60,000 psi(413.76 MPa),則混凝土護箱之鋼筋組件最大容許應力為:

 $\sigma_{\text{rebar}} = \phi F_y = (0.9)(60,000 \text{ psi}) = 54,000 \text{ psi}(372.38 \text{ MPa})$

F_y = 60,000 psi(413.76 MPa), 鋼筋容許應力

 $\phi = 0.90$,鋼筋載重折減因數

故安全餘裕 (margin of safety) = 54,000 psi /6,423 psi - 1 = +7.4

護箱混凝土部份承受圓周及垂直方向壓應力,計算所得最大圓周向壓應力115.3 psi(795 KPa)發生在距護箱底部366 cm處,最大垂直向壓應力653 psi(4.50 MPa)發生在距護箱底部346.3 cm處。

拉應力分析分軸向及圓周方向,圓周方向應力以兩個垂直平面 (0°及 6.42°)分析之,軸向應力以混凝土之四個垂直截面的三個水 平平面(頂層、中層、底層)分析之,前述平面詳見圖 6.2.6-23 及圖 6.2.6-24。拉應力以分析面之平均拉應力進行評估,作用於每個元素 的應力皆分別判斷為壓應力或張應力,若為張應力則以元素受力及 截面積計算之,若為壓應力則排除在此計算中。實驗顯示混凝土拉 應力為壓應力之 8%~15% [30],若壓應力為 4,000 psi(27.58 MPa),則 保守之容許拉應力為 320 psi(2.21 MPa)。

由表 6.2.6-25 及表 6.2.6-26 查出在正常及異常狀況下,混凝土最 大拉應力分別為 143 psi(986 KPa)及 251.5 psi(1.73 MPa),皆小於容許 應力值故不會產生裂縫。 根據 ACI 349-85 混凝土壁之承載應力 (bearing stress) 需考慮一 折減係數,則:

σ_{bearing} = φfc['] = (0.70)(4,000 psi) = 2,800 psi(19.31 MPa)
 fc['] 混凝土正向壓應力 = 4,000 psi(27.58 MPa)
 φ 混凝土壁強度折減因數 = 0.70

正常狀況下(32°C),最大混凝土熱應力為653 psi(4.50 MPa), 則:

MS = 2,800 psi/653 psi - 1 = +3.3

D. 組合負載

根據 ANSI/ANS 57.9 對於組合負載之定義,混凝土護箱正常、 異常及意外狀況下之各項組合負載如表 3.1.2-4 所示,包含靜負載、 活負載、熱負載及風力(詳本章六、(八).4 節)、地震(詳本章六、(八).1 節)、颱風(詳本章六、(八).4 節)、洪水(詳本章六、(八).2 節)、墜落(詳 本章六、(六).1 節)及傾倒(詳本章六、(六).2 節)造成之負載;靜負載、 活負載及熱負載之分析詳述於本節 A、B 及 C 段落,其餘意外狀況 負載分析詳相關章節。分析結果見表 6.2.6-23,由表中得知組合負載 最大混凝土壓應力為 6.36 MPa,小於容許應力 27.58 MPa,故混凝土 應不會產生裂縫。

(3) 混凝土護箱外加屏蔽

本節利用有限元素法,分析外加屏蔽在正常、異常及意外溫度狀況下, 鋼筋及混凝土之熱應力。分析結果顯示外加屏蔽鋼筋之最小安全餘裕為 +12.6,發生在屏蔽蓋板之環狀鋼筋,通風口半堵塞異常狀況下;外加屏 蔽混凝土在考慮靜負載及熱應力的狀況下,其最小安全餘裕為+5.26[51]。 在熱應力分析部份,與混凝土護箱熱應力分析方式相同,先進行穩 態之熱傳分析,再將分析所得之溫度分佈作為結構分析之溫度負載,用以 計算外加屏蔽之熱應力。

進行穩態之熱傳分析時,建立軸對稱或四分之一有限元素模型,外 加屏蔽蓋板及底板之 3D 有限元素模型為四分之一對稱,中間環狀屏蔽則 為軸對稱。因為中間環狀屏蔽有 70 根垂直鋼筋,故建立 1/70 扇形模型, 保守起見,部份補強筋不納入模型,模型如圖 6.2.6-25;溫度邊界條件施 加於外加屏蔽內、外表面上,溫度條件保守採用最高溫及內外表面之最大 溫度梯度狀況,即 56 °C 意外狀況之放大溫度梯度 25 °C,之後進行固體 熱傳導分析以求得外加屏蔽各元素之溫度分布。再以 3D 有限元素模型進 行結構熱應力之計算,將熱傳分析結果之溫度分佈施加於結構模型上以計 算熱應力。

外加屏蔽穩態熱傳導模型以"SOLID70"元素模擬混凝土,"LINK33" 元素模擬鋼筋,以熱流分析所得外加屏蔽內外表面溫度為邊界條件,表 6.2.6-27 顯示屏蔽蓋板、中間環狀屏蔽及屏蔽底板各環境條件及操作狀況 下之溫度梯度。

中間環狀屏蔽結構模型以"SOLID45"元素模擬混凝土,以"LINK8"元 素模擬鋼筋,其元素位置須與實際設計之鋼筋位置相同;以"real constants" 設定外圈實際環狀鋼筋尺寸,內圈垂直鋼筋之尺寸則需要依據實際比例 63 比 70(內圈 63 支鋼筋,外圈 70 支鋼筋)進行修改。有限元素模型與穩態 熱傳分析之模型相同,僅元素種類及邊界條件不同,溫度負載則為穩態熱 傳導分析所得溫度分布。外加屏蔽蓋板及底板之熱應力分析方式,與上述 中間環狀屏蔽分析方式相同,其模型如圖 6.2.6-26 及圖 6.2.6-27 所示。

中間環狀屏蔽、外加屏蔽蓋板及底板之鋼筋與混凝土應力分析統計結 果如表 6.2.6-28,其中最大之混凝土應力為 3.08 MPa (447.3 psi),發生在中

6.2.6-46

間環狀屏蔽;最大之鋼筋應力為27.3 MPa (3,959.6 psi),發生在屏蔽蓋板之 環狀鋼筋,所有安全餘裕均為正值,符合設計要求。

3. 貯存場混凝土基座評估

如第一章所述,在貯存場預定場址範圍內,可提供作為貯存場之用 的面積約略為 0.45 公頃,但是實際規劃作為承載貯存護箱之基座面積約 為 2,200 m²,並在場址南側 16 m 寬進場道路與貯存場筏式基座間設伸縮 縫,使兩者結構不連續。貯存場基座範圍內,現有高程從南側約 25 m, 至北側高程約 22 m,預估挖除表面腐植土後,進行挖填方整地,將厚約 2.5 m 表土層挖除後回填碎石級配,上舖約厚 90 cm 之筏式基礎,並於基 座東西側施作擋土排樁,以確保貯存場加載與回填整地後之穩定性,筏式 基座完成面高程約 24 m。貯存場配置如圖 1.2-8 所示。

為排除低窪處地下水,除將原有較不透水之地面覆蓋層挖除後改鋪 透水性佳之碎石級配,並於基礎西側山坡坡趾處設地下擋土排樁,並於排 樁兩側設置地表排水溝,可疏解累積孔隙水壓,且在基礎東側護岸排樁設 置地下不織布盲管導引排水,將基座下水壓藉由排樁間之導水管排入乾華 溪,用以排除地表滲流及地下水。

由於基座上置放 30 個護箱,須考量基座之結構設計及地層之承載能 力與沉陷量,是否符合標準;又由地質鑽探報告得知小部份地表層有液化 之虞,故對地盤作液化潛能評估,分別說明如下。

(1) 貯存場基座結構設計[58]

A. 法規依據

依據參考文獻[31]規定,參考 ACI-349 [4]、建築法[32]及我國建築技術規則[33]等相關法規,並符合 10 CFR72 [1]之需求,以極限強度設計法進行配筋設計。

B. 分析方法

針對本計畫之基座設計與分析,使用分析之軟體為 STAAD Pro 2004。

根據 ACI 349 規定,經去除不存在之載重並簡化為以下三種比較 之:

U=1.4D+1.7L+1.7Eo U=D+L+Ess U=1.05D+1.3L+1.3Eo 其中:

D=靜載重(dead load)

L=活載重(live load)

Eo=運轉基準地震(Operating Basis Earthquake, OBE)載重

Ess=安全停機地震(Safe Shutdown Earthquake, SSE)載重

C. 基座使用之材料

• 混凝土

基座混凝土採用 Type Ⅱ水泥,混凝土強度為 280 kg/cm² (4,000 psi), 粗細骨材、水、掺料、配比等,皆應符合 ACI、ASTM 或 CNS 等規定。

● 鋼筋

使用鋼筋性質為,#5(含)以下之抗拉強度為2,800 kg/cm²(40,000 psi);#6(含)以上之抗拉強度為4,200 kg/cm²(60,000 psi)。基座與土層 接觸之鋼筋保護層厚度採7.6 cm(3 in),其餘位置之鋼筋保護層厚度 則採5.1 cm(2 in)。

D. 分析結果

當全部護箱安置於基座上時,因重心不在基座幾何中心,會產生 偏心載重,如圖 6.2.6-28 所示,偏心 ex 為 1.5 m,偏心 ey 為 3.55 m。

不論是在 30 個護箱載重,或是局部護箱載重下,其平均土壓力 不超過 20 MT/m²,都小於本基地之土壤容許承載力 40 MT/m²。 又分別計算圓柱護箱包含外加屏蔽或不含外加屏蔽對基座貫穿 剪力之影響,混凝土抗剪強度皆大於每個混凝土護箱重量對樓板之 局部貫穿,其安全係數分別為2.16及11.12,符合載重要求。

運用 STAAD Pro 2004 軟體分析判斷為柔性基礎,模擬土壤反力 相當於無數個彈簧作用於基座上,基座上 30 個護箱之重量與地盤反 力在變形與力之平衡下,使 90 cm 厚混凝土基座基座斷面承受彎矩 與剪力,鋼筋混凝土基座以#10@18 cm 雙層雙向配筋時,彎矩之安 全係數為 1.69。其單位寬度極限抗剪能力安全係數為 2.16,符合載 重要求。

(2) 貯存場基座承載力及沉陷量評估[57]

A. 法規依據

依據參考文獻[31]規定,參考 ACI-349 [4]、建築法[32]、我國建 築技術規則[33]及 RG 1.198 [39]等相關法規,並符合 10 CFR72 [1]之 需求。依據建築物基礎構造設計規範 4.4.8 節之建議,筏式基礎土壤 總壓密沉陷量不超過5 cm,且基礎之容許角變量應小於建築物不容 許裂縫產生的安全限度(含安全係數)之角變量容許標準 1/500 為原 則,以進行基座設計。

B. 分析方法

以 Meyerhof 之理論,預估土壤之承載力,其中砂性地層依摩擦 角ψ推估;黏性地層以凝聚力或不排水剪力強度 C'或 Cu 值推估。同 時考量地下水深度、基座深度、尺寸等因素,對承載力之影響。

由於東西兩側地下有排樁,為保守考量,計算時不考量應力會傳 播至樁外側效應;又基座北側依最新水保計畫書之規劃,不設置排 樁,且會將開挖土回填至高程 EL.24 m,故不影響地中應力傳播問 題;但為簡化保守分析,整體分析地中應力時,則考量在樁深度內 不計算應力擴散效應,而樁深度以下之地中應力,則採 30 度角向下 傳播方式計算。計算時求出各土層中之壓應力,同時考量地下水位、 基礎深度、尺寸等因素,逐漸累計其沉陷量。

C. 設計輸入及假設

為簡化設計,貯存場筏式基座假設為長方型,南側16m寬道路 剛性鋪面與貯存場筏式基座間設伸縮縫,護箱載重將集中於貯存場 基礎版。由於貯存場基礎版周邊之擋土排樁提供足夠邊坡穩定強 度,且大於原土壤的被動土壓,但為保守估計土壤承載力,分析時 將忽略擋土排樁的影響。

每個混凝土護箱不含外加屏蔽之原設計重量約150 MT;外加屏 蔽重約80 MT;每個護箱含外加屏蔽重合計約230 MT。貯存場上以 最多存放30 個護箱設計,總計30 個混凝土護箱重約6,900 MT,貯 存場基座以實際承載基座面積約2,200 m²(長70 m x 寬35 m),厚0.9 m 體積約1,980 m³,重約4,554 MT,操作車輛及設備約70 MT,總 計約11,524 MT,基座土壤平均載重約5.24 MT/m²。

依地質鑽探報告[47,48,49],設計基座版頂高程為+24 m,因表土 層有局部液化之虞,抗液化對策可採用置換方式,將表土層以級配 或良質土取代,除可避免發生液化問題外,也可避免基座座落於疏 鬆表土層所導致的沉陷問題。整地前簡化之土層參數如表 6.2.6-29 所示;回填及整地後簡化之土層參數如表 6.2.6-30 所示。

根據地質調查報告[45,46,47],以基地內及鄰近之鑽孔 C-2、C-3、C-4、C-7、C-8、C-10之地下水位觀測結果,地下水位高程約在+20.5
m,即在基座底部下約 2.6 m 深。

D. 分析結果

貯存場規劃為70 m×35 m之筏式基座,荷重分布於基座東側之 混凝土護箱區域(70 m×17.4 m),西側之混凝土地坪區域(70 m×17.6 m) 則無長期載重,承載力分析時,分別考量東側無偏心之均勻載重狀 況,以及整個基座(70 m×35 m)因東側之混凝土護箱載重造成之偏心 效應,本分析以此兩種狀況進行承載力分析。

當最大荷重分布於筏式基礎東側之混凝土護箱區域(70 m×17.4 m)時,土壤淨極限承載力 qu³約 166.6 MT/m²,容許限承載力 qa 約 57.2 MT/m²,保守估計為 40 MT/m²,大於筏式基礎平均荷重 7.8 MT/m², 且尚有安全係數 5.12;若考慮東側之混凝土護箱載重造成整個筏式 基礎(70 m × 35 m)偏心效應,則土壤淨極限承載力 qu³約 492.2 MT/m²,容許限承載力 qa 約 165.8 MT/m²,保守估計為 40 MT/m²(容 許偏心載重約 36,856 MT),大於基礎依剛性原理計算之偏心最大荷 載 8.489 MT/m²,故結構荷重(或載重)均在土壤容許承載力範圍內。

沉陷量評估時考量基礎下分三層土層加以分析,第一層為回填約 2.6 m 經滾壓、夯實之級配碎石基層與回填卵石層,第二層為平均厚約6 m 之安山岩質卵石層,第三層為厚度平均約27 m 灰色泥質砂岩。

基地下土層因無黏性土壤出現,壓密沉陷與次壓縮沉陷量甚少, 可予以忽略。由於東西兩側地下有排樁,為簡化保守分析,整體分 析地中應力時,則考量在樁深度內不計算應力擴散效應。在不同載 重分布狀況下之沉陷量與角變量計算結果,貯存場荷重分布於筏式 基礎東側之混凝土護箱區域(70 m × 17.4 m)之筏式基礎立即彈性沉 陷量約2.09 cm,詳如表 6.2.6-31 所示。西側之混凝土地坪區域 (70 m × 17.6 m)則無長期載重(僅基礎版重),筏式基礎中心沉陷量約0.56 cm,詳如表 6.2.6-32 所示。若加計護岸排樁之側向變位而產生之地 表沉陷量後,最大總沉陷量為2.266 cm,均小於筏式基礎之容許沉 陷量,故貯存場之筏式基礎沉陷量均在容許範圍內。其間差異沉陷 量 $\delta=1.53$ cm,角變量=1/1,144 (<1/500),均符合相關規範之要求。

(3) 貯存場基座土壤液化潛能評估

依據鑽探資料,基地地層為表土層、卵礫石層與砂岩層。一般卵 礫石夾層之砂土層液化潛能低,且因為卵礫石層之顆粒大、承載力

6.2.6-52

佳,液化危害相對降低,故僅針對表土層進行液化潛能分析。結果 顯示部份區域地表下 2.5 m 內之表土層具有液化潛能,故採用置換方 式將表土層挖除後,以級配或良質土取代,並加以夯實強化,除可 避免發生液化問題外,也可避免基座座落於疏鬆表土層所導致的沉 陷問題。

圖 6.2.6-1 INER-HPS 系統密封鋼筒吊環設計

圖 6.2.6-2 INER-HPS 系統傳送護箱吊耳軸

圖 6.2.6-3 INER-HPS 系統混凝土護箱吊耳設計

圖 6.2.6-4 基座銲件有限元素模式

圖 6.2.6-5 密封鋼筒吊舉有限元素模式

圖 6.2.6-6 密封鋼筒吊舉應力圖

圖 6.2.6-7 傳送護箱外壁體及吊耳軸之有限元素模式

圖 6.2.6-8 傳送護箱外壁體與吊耳軸接合節點位置

圖 6.2.6-9 傳送護箱內壁體與吊耳軸接合節點位置

圖 6.2.6-10 密封鋼筒組成有限元素模式

圖 6.2.6-11 位於結構上蓋及屏蔽上蓋密封鋼筒組成銲接區有限元素模式

圖 6.2.6-12 密封鋼筒組成底板有限元素模式

圖 6.2.6-13 密封鋼筒組成內區段應力位置之有限元素模式

圖 6.2.6-14 典型提籃組件

圖 6.2.6-15 提籃承載圓盤有限元素模式

圖 6.2.6-16 提籃承載圓盤部分應力評估

圖 6.2.6-17 提籃頂端銲件板有限元素模式

(Figure Inverted to Show Weldment Stiffeners)

圖 6.2.6-18 提籃底部銲件板有限元素模式

圖 6.2.6-19 燃料管幾何形狀

圖 6.2.6-20 混凝土護箱熱應力模式

圖 6.2.6-21 混凝土護箱熱應力模式-垂直與水平鋼筋詳細佈置

Note: CONTAC52 GAP Elements allow radial translation but don't transmit tensile loading

圖 6.2.6-22 混凝土護箱熱應力模式邊界條件

圖 6.2.6-23 混凝土護箱熱應力模式軸向應力評估位置

圖 6.2.6-24 混凝土護箱熱應力模式圓周方向周圍應力評估位置

圖 6.2.6-25 中間環狀屏蔽穩態熱傳導分析模型-混凝土及鋼筋

圖 6.2.6-26 屏蔽上蓋穩態熱傳導分析模型-混凝土及鋼筋

圖 6.2.6-27 屏蔽底板穩態熱傳導分析模型-混凝土及鋼筋

形心(x,y)=(18.28,32.62)

重心(x,y)=(21.84,31.12)

圖 6.2.6-28 貯存場偏心載重平面圖

圖 6.2.6-29 貯存場配筋標準圖

章節	吊運評估項目	最大載重情況
本章 ニ、(六). 1. (1).節	密封鋼筒	已裝載之密封鋼筒重 +10% 動態載重係數
	混凝土護箱之底部上 舉之千斤頂	已裝載之混凝土護箱重 +10% 動態載重係數
本章	混凝土護箱底部銲件	已裝載之密封鋼筒重 +10% 動態載重係數
ニヽ(六). 1. (2).節	混凝土護箱之底部上 舉之氣墊	已裝載之混凝土護箱重
	混凝土護箱頂部吊耳	已裝載之混凝土護箱重 +10% 動態載重係數
本章	傳送護箱	已裝載之傳送護箱重 +10% 動態載重係數
ニ、(六). 1. (3).節	傳送護箱之屏蔽門及 門軌	已裝載之密封鋼筒重 + 水重 + 屏蔽門重 + 10% 動態載重係數

表 6.2.6-1 吊運狀況下吊運組件之組合載重情況

註:10% 動態載重係數是依據 ANSI/ASME N45.2.15。

(1) 密封鋼筒中吊運組件之結構分析。
A. 吊環應力分析。
B. 密封鋼筒外殼結構分析
(2) 混凝土護箱中吊運組件之結構分析。
A. 底部上舉評估
(A) 混凝土承載壓應力分析
(B) 底部 Nelson studs 張力分析
(C) 底座銲件中立管分析
(D) 底部支撑氣墊分析
B. 頂部吊運評估
(A) 吊耳容許降伏承載應力分析。
(B) 固定錨頂板分析
(C) 固定錨拉應力分析
(D) 固定錨在混凝土內之剪力分析
(E) 各組件銲接分析
(F) 底部 Nelson studs 張力及錨定分析
(G) 混凝土護箱底座分析
(3) 傳送護箱中吊運組件之結構分析。
A. 傳送護箱外壁體及吊耳軸分析。
B. 保護環及保護環螺栓分析。
(A) 保護環分析
(B) 密封鋼筒與保護環間之接觸支撐應力分析
(C) 保護環螺帽對保護環之剪應力分析
(D) 螺栓邊緣距離分析
(E) 保護環螺栓應力分析
C. 內外壁與底板銲接分析。
D. 傳送護箱滑門、門軌與銲接分析。
(A) 門軌應力分析
(B) 屏蔽門應力分析
(C) 門軌銲接評估

表 6.2.6-2 吊運狀況下各結構物之結構分析

應力位置	最大節點應力 (MPa)	容許應力, S _m (MPa)	安全餘裕*								
1/4-in 間隔											
基座立管	70.43	133.07	0.89								
阻板銲件	0.74	133.07	>10								
基座底板	7.04	133.07	>10								
	0-iı	n 間隔									
基座立管	56.71	133.07	1.35								
阻板銲件	43.32	133.07	2.07								
基座底板	5.45	133.07	>10								

表 6.2.6-3 節點最大應力與 SA-36 碳鋼容許應力的比較

*安全餘裕為容許應力與實際應力之差對實際應力的比值。當安全餘裕為 正值時,表示結構強度足以負荷該負載,即為安全之設計。

		主應力(MPa)	節點應力強度	安全係數배時代點度	安全係數難服驗度
節點 ¹	S1	S2	S 3	(MPa)	Sy/S.I. ²	Su/S.I. ²
815	20.31	-2.18	-52.67	72.98	N/A ³	N/A ³
818	30.74	-0.04	-23.51	54.25	N/A ³	N/A ³
703	47.76	5.39	-6.17	53.94	N/A ³	N/A ³
820	26.15	-0.02	-19.86	46.00	6.8	10.5
827	29.02	0.14	-15.07	44.08	7.1	10.9
862	24.30	0.01	-19.43	43.73	7.2	11.0
825	27.60	0.45	-15.30	42.89	7.3	11.3
852	25.07	0.00	-17.51	42.57	7.4	11.3
822	23.94	0.00	-17.57	41.51	7.6	11.6
829	20.03	-0.16	-21.26	41.29	7.6	11.7
767	22.67	1.03	-16.54	39.21	8.0	12.3
842	23.22	0.00	-15.58	38.81	8.1	12.4
816	21.99	0.00	-16.61	38.60	8.1	12.5
943	21.63	0.00	-16.56	38.19	8.2	12.6
941	21.30	0.00	-16.47	37.77	8.3	12.8
2	20.90	0.00	-16.34	37.24	8.4	13.0
832	21.36	0.00	-14.68	36.05	8.7	13.4
871	35.09	17.79	-0.14	35.23	8.9	13.7
964	20.85	0.00	-14.26	35.11	9.0	13.7
864	21.43	0.08	-12.93	34.35	9.2	14.0
954	20.39	0.00	-13.84	34.23	9.2	14.1
854	22.34	0.02	-11.74	34.07	9.2	14.2
8	19.88	0.00	-13.44	33.32	9.4	14.5
47	17.23	0.00	-14.76	31.99	9.8	15.1
657	14.89	-0.14	-17.03	31.91	9.9	15.1
844	21.21	0.01	-10.64	31.85	9.9	15.2
873	31.47	16.91	-0.14	31.61	9.9	15.3
780	15.73	1.49	-15.87	31.60	9.9	15.3
698	14.20	-0.12	-16.96	31.16	10.1	15.5
705	21.00	-2.17	-9.75	30.75	10.2	15.7

表 6.2.6-4 傳送護箱外壁體元件頂部表面前 30 高應力

註:

1.節點位置詳圖 6.2.6-8.

 $2.S_y = 314.4$ MPa(45,600 psi), $S_u = 482.6$ MPa(70,000 psi)。S.I.為 ASME III NB-3213.1 與 NB-3215 定義之應力強度(stress intensity)。

		主應力(MPa)	節點應力強度	安全係數對時代強度	安全係數鲱細眼驗度
節 點 ¹	S1	S2	S3	(MPa)	Sy/S.I. ²	Su/S.I. ²
815	166.29	9.46	-2.56	168.85	N/A ³	N/A ³
703	3.04	-8.12	-107.19	110.23	N/A ³	N/A ³
829	69.40	32.89	-0.19	69.59	N/A ³	N/A ³
818	58.12	9.36	-0.08	58.20	N/A ³	N/A ³
862	53.04	18.09	-0.08	53.12	N/A ³	N/A ³
638	24.82	-0.22	-20.88	45.70	6.9	10.6
864	44.35	16.16	-0.07	44.41	7.1	10.9
776	32.40	1.42	-11.62	44.03	7.1	11.0
649	14.77	-2.28	-28.03	42.80	7.3	11.3
827	41.12	20.20	-0.15	41.27	7.6	11.7
820	40.65	16.53	-0.01	40.66	7.7	11.9
778	35.59	4.93	-4.73	40.32	7.8	12.0
709	0.56	-33.95	-39.43	39.99	7.9	12.1
871	0.13	-4.35	-39.34	39.47	8.0	12.2
852	38.60	15.39	-0.02	38.62	8.1	12.5
651	7.34	-7.49	-31.15	38.49	8.2	12.5
780	36.22	11.65	-2.06	38.28	8.2	12.6
825	37.36	18.25	-0.41	37.77	8.3	12.8
866	37.10	10.94	0.00	37.10	8.5	13.0
767	36.02	16.95	-1.03	37.04	8.5	13.0
873	0.12	-3.10	-36.31	36.43	8.6	13.2
653	4.46	-16.54	-31.15	35.61	8.8	13.6
854	34.77	11.70	-0.03	34.80	9.0	13.9
822	34.07	13.11	0.00	34.07	9.2	14.2
883	0.24	-3.98	-33.69	33.92	9.3	14.2
875	0.12	-1.93	-33.55	33.67	9.3	14.3
769	33.48	6.10	0.00	33.48	9.4	14.4
842	32.84	12.09	0.00	32.84	9.6	14.7
641	20.13	0.01	-12.50	32.64	9.6	14.8
786	24.48	0.00	-7.84	32.32	9.7	14.9

表 6.2.6-5 傳送護箱外壁體元件底部表面前 30 高應力

註:

1.節點位置詳圖 6.2.6-8.

2.Sy = 314.4 MPa(45,600 psi), Su = 482.6 MPa(70,000 psi)

		主應力(MPa)	節點應力強度	安全係數的時代強度	安全係數鲱細眼驗度
節 點 ¹	S1	S2	S3	(MPa)	Sy/S.I. ²	Su/S.I. ²
1869	10.86	-3.47	-90.78	101.64	N/A ³	N/A ³
1634	10.77	-2.17	-81.19	91.96	N/A ³	N/A ³
1797	70.75	-0.69	-17.13	87.89	N/A ³	N/A ³
1803	64.51	21.82	-1.85	66.37	N/A ³	N/A ³
1801	55.52	22.64	-1.39	56.91	N/A ³	N/A ³
1799	38.86	21.16	-1.11	39.97	7.9	12.1
1633	28.53	5.09	-0.01	28.54	11	16.9
1882	4.57	-15.29	-23.28	27.86	11.3	17.3
1648	3.18	-2.07	-22.58	25.76	12.2	18.7
1879	2.10	-0.84	-23.40	25.50	12.3	18.9
1652	0.89	-7.19	-24.49	25.38	12.4	19
1650	2.73	-0.08	-21.77	24.49	12.8	19.7
1644	6.18	-0.17	-18.26	24.43	12.9	19.8
1666	24.39	3.78	0.00	24.39	12.9	19.8
1886	0.64	-19.24	-23.55	24.20	13	19.9
1725	22.35	18.29	-1.22	23.56	13.3	20.5
1884	2.53	-11.70	-20.46	22.99	13.7	21
1646	2.08	-7.04	-20.89	22.98	13.7	21
1822	21.50	13.52	-0.11	21.61	14.5	22.3
1636	21.58	5.77	-0.02	21.60	14.6	22.3
1838	20.09	15.74	-0.22	20.31	15.5	23.8
1676	19.69	5.40	-0.02	19.71	16	24.5
1727	2.07	-4.94	-16.70	18.77	16.8	25.7
1668	17.37	1.47	-0.03	17.40	18.1	27.7
1742	16.62	8.63	-0.05	16.68	18.9	28.9
1638	15.93	3.54	-0.02	15.95	19.7	30.3
1854	15.55	13.09	-0.34	15.89	19.8	30.4
1678	15.69	4.61	-0.01	15.71	20	30.7
1686	15.04	3.86	-0.01	15.06	20.9	32.1
1120	0.02	-5.29	-15.01	15.04	20.9	32.1

表 6.2.6-6 傳送護箱內壁體元件頂部表面前 30 高應力

註:

1.節點位置詳圖 6.2.6-9.

2.S_y = 314.4 MPa(45,600 psi), S_u = 482.6 MPa(70,000 psi)

		主應力(MPa)	節點應力強度	安全係數的時代點度	安全係數難服驗度
節 點 ¹	S1	S2	S3	(MPa)	Sy/S.I. ²	Su/S.I. ²
1869	124.13	3.51	-11.92	136.05	N/A ³	N/A ³
1634	65.26	3.72	-5.61	70.87	N/A ³	N/A ³
1882	48.79	6.29	-3.76	52.55	N/A ³	N/A ³
1797	7.66	1.06	-37.18	44.85	7	10.8
1731	16.17	-0.43	-27.29	43.46	7.2	11.1
1884	40.07	3.90	-2.73	42.80	7.3	11.3
1725	9.13	-2.33	-32.36	41.49	7.6	11.6
1782	17.08	0.00	-22.94	40.02	7.9	12.1
1742	14.04	0.00	-25.98	40.01	7.9	12.1
1886	39.47	17.00	-0.52	40.00	7.9	12.1
1729	21.24	0.49	-18.67	39.91	7.9	12.1
1822	11.53	0.03	-27.03	38.56	8.2	12.5
1803	3.17	-24.67	-35.32	38.49	8.2	12.5
1801	3.18	-19.00	-35.05	38.23	8.2	12.6
1766	18.19	-0.01	-19.77	37.96	8.3	12.7
1799	4.01	-9.46	-33.57	37.58	8.4	12.8
1879	34.07	1.04	-1.53	35.61	8.8	13.6
1727	24.56	2.22	-10.02	34.59	9.1	14
1838	10.17	0.16	-23.88	34.04	9.2	14.2
1740	15.96	-0.01	-17.23	33.19	9.5	14.5
1784	15.21	0.00	-17.71	32.92	9.6	14.7
1750	15.77	-0.05	-16.70	32.48	9.7	14.9
1646	24.92	4.80	-7.36	32.29	9.7	14.9
1824	14.35	-0.01	-13.43	27.77	11.3	17.4
1768	11.90	0.00	-15.32	27.22	11.6	17.7
1806	21.90	0.66	-4.80	26.69	11.8	18.1
1854	9.09	0.32	-17.23	26.32	11.9	18.3
1738	14.73	0.01	-10.51	25.24	12.5	19.1
1786	12.35	0.00	-12.20	24.55	12.8	19.7
1932	24.47	9.97	-0.05	24.52	12.8	19.7

表 6.2.6-7 傳送護箱內壁體元件底部表面前 30 高應力

註:

1.節點位置詳圖 6.2.6-9.

2.S_y = 314.4 MPa(45,600 psi), S_u = 482.6 MPa(70,000 psi)

章節	分析項目	涵蓋條件
А	密封鋼筒熱應力分析	密封鋼筒組件在貯存及運送情況最大溫度歷程
В	密封鋼筒靜重分析	已裝載之密封鋼筒
С	密封鋼筒最大內壓力分析	密封鋼筒內壓力為 15 psig
D	密封鋼筒吊運分析	已裝載之密封鋼筒 ^a
		密封鋼筒內壓力為 15 psig +
Б	密封鋼筒負載組合	已裝載之密封鋼筒(吊運) ^a +
E		已裝載之密封鋼筒(靜重) ^a +
		密封鋼筒組件在貯存及運送情況最大溫度歷程
F	密封鋼筒及提籃疲勞評估	溫度循環(58°F)
G	密封鋼筒壓力試驗	已裝載之密封鋼筒
Н	提籃承載圓盤評估	已裝載 BWR 之密封鋼筒
Ι	提籃銲件評估	已裝載 BWR 之密封鋼筒
J	燃料管分析	已裝載 BWR 之密封鋼筒
K	密封鋼筒封銲評估	同章節 E

表 6.2.6-8 密封鋼筒及提籃各項分析之涵蓋條件

^a 以垂直與水平的加速度作為垂直與水平吊運負載.

表 6.2.6-9	密封鋼筒	主要位	置輸入	節點	温度值
-----------	------	-----	-----	----	-----

密封鋼筒	位置		正常、異常		容許應力		執應力		
Ш 21 21 11			 及意外事故		分析		分析		
E	D		節點溫度 ℃ (°F)	提高温度	節點輸入 溫度℃(°F)		節點輸入 溫度℃(°F)		
F		А	140.8 (285.4)	(註2)	148.9 (300)		148.9 (300)		
		В	114.9 (238.8)	⇒	116.1 (241)		104.4 (220)		
	• C	С	215.8 (420.4)	, ,	287.8 (550)		287.8 (550)		
		D	132.6 (270.7)		132.8 (271)		98.9 (210)		
		Е	134.3 (273.7)		134.4 (274)		104.4 (220)		
A	В	F	135.3 (275.5)		136.1 (277)		110.0 (230)		
			↓(註1)				①(註1)		
			節點溫差 ℃ (°F)		節點溫差 ℃ (°F)				
△位	置		Δ Τ	擴大溫差(註1)			Δ Τ		
∆ Al	3		25.9 (46.6)		\Rightarrow		44.4 (80)		
∆ B0	<u> </u>		100.9 (181.6)				183.3 (330)		
∆ CI	Δ CD 83.						188.9 (340)		
Δ DI	E		1.7 (3.0)				5.6 (10)		
∆ EI	Δ EF 1.0 (1.8)			1			5.6 (10)		
註1:以一 註2:以一									

截面1	角度 (度)	Sx	Sy	Sz	Sxy	Syz	Sxz	應力強度
1	0	-1.65	0.28	6.83	-0.55	0.21	0.76	8.69
2	0	0.90	-12.48	2.83	-1.03	0.14	0.21	15.38
3	0	-1.52	17.31	8.14	0.41	-0.07	0.83	18.89
4	180	0.00	-0.07	0.00	0.00	-0.07	0.00	0.14
5	0	0.00	0.62	-0.34	-0.07	-0.07	0.00	0.97
6	0	0.00	0.76	-0.34	0.07	0.07	0.00	1.17
7	180	0.00	-0.07	0.00	0.00	0.07	0.00	0.14
8	0	0.00	0.76	-0.55	0.00	-0.07	-0.07	1.31
9	0	16.82	8.41	6.55	5.45	-0.55	-0.21	14.00
10	0	-29.65	-3.17	-11.51	-3.52	0.07	1.03	27.51
11	0	8.27	-36.68	-8.07	3.59	-0.48	-1.17	45.57
12	0	-29.65	-3.17	-11.51	-3.52	0.07	1.03	27.51
13	0	-18.68	7.03	-2.90	2.41	-0.28	1.24	26.34
14	180	-125.55	-75.22	-123.97	0.21	-7.17	-2.55	53.57
15	180	0.76	-0.62	0.76	0.00	-0.07	0.00	1.38
16	180	-9.03	-6.89	-8.96	0.00	0.55	-0.21	2.48

表 6.2.6-10 密封鋼筒次要(熱)應力(MPa)

表 6.2.6-11 靜載重(立於地上)對密封鋼筒主要薄膜應力 Pm (MPa)

截面1	角度 (度)	Sx	Sy	Sz	Sxy	Syz	Sxz	應力強度
1	0	0.00	-0.34	-0.07	-0.07	0.00	0.00	0.34
2	0	0.07	-0.76	-0.14	-0.07	0.00	0.00	0.83
3	0	0.00	-0.90	-0.21	0.00	0.00	0.00	0.83
4	0	0.00	-0.83	0.00	0.00	0.00	0.00	0.83
5	0	0.00	-0.76	0.00	0.00	0.00	0.00	0.76
6	0	0.00	-0.69	0.00	0.00	0.00	0.00	0.69
7	0	0.00	-0.62	0.00	0.00	0.00	0.00	0.62
8	40	0.00	-0.41	0.00	0.00	0.00	0.00	0.41
9	60	-0.21	-0.21	-0.14	0.00	0.07	-0.07	0.21
10	0	0.21	-0.14	-0.14	0.00	0.00	0.00	0.34
11	0	-0.21	0.07	-0.14	-0.07	0.00	0.00	0.28
12	80	-0.07	0.21	0.07	0.00	-0.07	0.00	0.28
13	0	0.07	-0.21	-0.14	0.00	0.00	0.00	0.28
14	0	0.00	-0.14	0.00	0.00	0.00	0.00	0.14
15	0	0.07	0.00	0.07	0.00	0.00	0.00	0.07
16	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00

1. 應力分析位置示意圖如圖 6.2.6-13.

截面1	角度 (度)	Sx	Sy	Sz	Sxy	Syz	Sxz	應力強度
1	0	0.07	-0.41	-0.07	-0.07	0.00	0.00	0.48
2	0	0.07	-0.97	-0.21	0.00	0.00	0.00	1.03
3	0	0.00	-0.90	-0.21	0.00	0.00	0.00	0.90
4	0	0.00	-0.83	0.00	0.00	0.00	0.00	0.83
5	0	0.00	-0.76	0.00	0.00	0.00	0.00	0.76
6	0	0.00	-0.69	0.00	0.00	0.00	0.00	0.69
7	0	0.00	-0.62	0.00	0.00	0.00	0.00	0.62
8	0	0.07	-0.48	0.00	0.00	0.00	0.00	0.48
9	80	-0.34	-0.55	-0.07	0.00	0.07	-0.07	0.55
10	100	-0.28	-0.69	0.07	0.00	0.07	0.07	0.83
11	0	-0.14	0.55	0.07	-0.07	0.00	0.00	0.76
12	0	0.34	0.34	0.07	0.14	0.00	0.00	0.41
13	0	0.34	-0.14	0.00	-0.07	0.00	0.00	0.48
14	0	0.00	-0.14	0.00	0.00	0.00	0.00	0.14
15	180	0.48	0.00	0.48	0.00	0.00	0.00	0.48
16	180	-0.21	0.00	-0.21	0.00	0.00	0.00	0.21

表 6.2.6-12 靜載重(立於地上)對密封鋼筒主要薄膜+彎矩應力 Pm+Pb (MPa)

表 6.2.6-13 正常狀態(內壓力 15 psi)對密封鋼筒主要薄膜應力 Pm (MPa)

截面1	角度 (度)	Sx	Sy	Sz	Sxy	Syz	Sxz	應力強度
1	0	0.69	10.07	3.93	-1.45	0.14	0.28	9.86
2	0	6.76	-6.55	-8.34	-1.45	0.14	-1.10	15.44
3	0	-1.24	2.90	-12.82	2.90	-0.28	-1.10	17.37
4	0	0.00	2.69	5.45	0.00	0.00	0.48	5.52
5	0	0.00	2.69	5.38	0.00	0.00	0.48	5.52
6	0	0.00	2.69	5.38	0.00	0.00	0.48	5.52
7	0	0.00	2.69	5.38	0.00	0.00	0.48	5.52
8	0	0.00	2.69	2.76	-0.07	0.00	0.28	2.83
9	0	0.28	2.00	1.45	0.21	0.00	0.14	1.79
10	0	-0.83	1.31	0.97	-0.28	0.00	0.14	2.28
11	60	0.76	-0.21	1.03	0.07	-0.14	-0.21	1.38
12	80	0.28	-1.24	-0.41	-0.07	0.41	0.14	1.72
13	0	-0.21	1.24	0.76	0.07	-0.07	0.07	1.45
14	0	1.52	-0.14	1.52	0.48	-1.17	0.00	2.96
15	0	-0.21	-0.07	-0.21	0.00	0.00	0.00	0.14
16	0	0.14	0.00	0.14	0.00	0.00	0.00	0.14

1. 應力分析位置示意圖如圖 6.2.6-13.

截面 ¹	角度 (度)	Sx	Sy	Sz	Sxy	Syz	Sxz	應力強度
1	0	7.72	24.34	0.83	-0.07	0.14	-0.34	23.51
2	0	3.24	-46.88	-21.24	-3.31	0.21	-2.00	50.75
3	0	-4.90	65.57	4.55	3.65	-0.28	0.62	70.88
4	0	-0.07	2.62	5.52	0.00	0.00	0.48	5.58
5	0	0.00	2.69	5.45	0.00	0.00	0.48	5.58
6	0	0.00	2.69	5.45	0.00	0.00	0.48	5.58
7	0	-0.07	2.69	5.45	0.00	0.00	0.48	5.58
8	0	0.00	3.03	2.90	-0.07	0.00	0.28	3.10
9	0	0.28	4.21	2.07	0.62	-0.07	0.14	4.14
10	0	-0.62	5.03	2.14	0.14	0.00	0.21	5.72
11	10	0.90	-2.90	-0.21	0.28	-0.07	-0.21	3.86
12	80	-0.28	-2.34	-1.17	-0.14	0.69	0.14	2.41
13	0	-1.72	0.55	0.14	0.21	-0.07	0.14	2.28
14	180	34.89	1.38	34.89	0.41	-1.17	0.00	33.58
15	170	-2.34	-0.14	-2.34	0.00	0.00	0.00	2.14
16	180	1.38	0.07	1.38	0.00	0.00	0.00	1.31

表 6.2.6-14 正常狀態(內壓力 15 psi)對密封鋼筒主要薄膜+彎矩應力 Pm+Pb (MPa)

表 6.2.6-15 吊運狀態(無內壓)對密封鋼筒主要薄膜應力 Pm (MPa)

截面1	角度 (度)	Sx	Sy	Sz	Sxy	Syz	Sxz	應力強度
1	0	0.83	12.41	4.83	-1.79	0.07	0.34	12.13
2	0	8.07	-7.93	-11.65	-1.86	0.14	-1.52	20.13
3	0	-1.38	3.65	-18.13	3.31	-0.28	-1.52	23.58
4	0	0.00	3.52	0.07	0.00	0.00	0.00	3.52
5	0	0.00	3.79	0.00	0.00	0.00	0.00	3.86
6	0	0.07	4.27	-0.07	0.00	0.07	0.00	4.34
7	0	0.07	5.10	-0.07	0.00	0.07	0.00	5.17
8	0	0.21	7.86	-0.14	0.00	0.48	-0.07	8.14
9	0	0.34	10.76	2.69	0.48	1.03	0.21	10.62
10	0	-2.00	13.38	2.48	0.69	1.45	0.48	15.65
11	0	-4.76	7.31	5.03	-4.07	0.83	0.76	14.75
12	0	-1.10	13.72	3.45	1.10	0.76	0.62	15.10
13	0	2.28	-2.62	6.83	-4.27	0.21	1.10	12.34
14	0	1.79	-0.07	1.79	0.62	-1.52	0.00	3.79
15	180	-0.07	-0.07	0.00	0.00	0.00	0.00	0.00
16	180	0.00	-0.21	0.00	-0.07	0.00	0.00	0.21

1. 應力分析位置示意圖如圖 6.2.6-13.

截面1	角度 (度)	Sx	Sy	Sz	Sxy	Syz	Sxz	應力強度
1	0	9.10	30.06	-0.34	-0.14	0.14	-0.48	30.48
2	0	3.93	-57.71	-27.44	-4.14	0.28	-2.62	62.40
3	0	-5.86	82.05	3.65	4.27	-0.28	0.55	88.39
4	60	-0.28	3.45	-0.14	0.00	0.00	-0.14	3.79
5	0	0.07	3.52	-0.97	0.00	0.07	-0.07	4.48
6	0	0.07	3.86	-1.31	0.00	0.07	-0.14	5.17
7	0	0.07	4.62	-1.45	0.00	0.07	-0.14	6.07
8	0	0.21	7.72	-0.90	0.00	0.41	-0.07	8.69
9	0	-0.55	11.72	2.34	-0.14	1.45	0.00	12.41
10	0	-3.24	19.65	4.34	1.38	0.90	0.90	23.24
11	0	-7.10	7.93	4.76	-7.17	1.31	0.83	20.96
12	0	-3.52	18.00	3.86	1.24	0.90	0.90	21.79
13	0	10.82	-6.14	10.55	-1.72	-0.55	1.65	18.75
14	180	45.37	1.86	45.37	0.55	-1.52	0.00	43.64
15	180	0.97	-0.14	1.03	0.00	-0.07	0.00	1.17
16	180	2.48	-0.28	2.69	-0.07	0.07	0.14	2.96

表 6.2.6-16 吊運狀態(無內壓)密封鋼筒主要薄膜+彎矩應力 Pm+Pb (MPa)

表 6.2.6-17 正常狀態時組合負載對密封鋼筒主要薄膜應力 Pm (MPa)

截面1	角度 (度)	SX	SY	SZ	SXY	SYZ	SXZ	應力強度	容許應力 ²	安全餘裕
1	0	1.52	22.48	8.76	-3.24	0.21	0.62	21.99	115.14	4.23
2	0	14.82	-14.55	-19.99	-3.31	0.28	-2.62	35.58	115.14	2.24
3	0	-2.62	6.55	-30.96	6.21	-0.55	-2.62	40.96	115.14	1.81
4	0	0.00	6.21	5.52	0.00	0.00	0.48	6.27	111.28	16.72
5	0	0.00	6.48	5.38	0.00	0.00	0.48	6.48	102.87	14.81
6	0	0.07	6.96	5.38	0.00	0.07	0.48	6.96	102.46	13.69
7	0	0.07	7.79	5.38	0.00	0.07	0.48	7.79	110.39	13.20
8	0	0.14	10.55	2.55	-0.07	0.48	0.21	10.48	115.14	10.02
9	0	0.14	12.48	3.59	0.34	1.03	0.28	12.48	115.14	8.20
10	0	-2.34	14.48	3.17	0.14	1.45	0.55	17.10	115.14	5.74
11	0	-3.03	6.76	6.76	-3.59	0.76	0.83	12.41	115.14	8.29
12	0	-1.38	13.79	3.79	0.55	0.76	0.69	15.38	115.14	6.50
13	0	1.72	-0.41	9.17	-4.07	0.07	1.38	13.10	115.14	7.78
14	0	3.31	-0.14	3.31	1.03	-2.69	0.00	6.76	115.14	16.05
15	0	-0.41	-0.07	-0.41	0.00	0.00	0.00	0.34	115.14	338.85
16	0	0.21	0.00	0.21	-0.07	0.14	0.00	0.34	115.14	329.76

1. 應力分析位置示意圖如圖 6.2.6-13.

2. 材料容許應力採用 ASME Code Service Level A 規定.

截面1	角度 (度)	SX	SY	SZ	SXY	SYZ	SXZ	應力強度	容許應力 ²	安全餘裕
1	0	16.82	54.47	0.48	-0.28	0.28	-0.83	53.99	172.71	2.20
2	0	7.17	-104.59	-48.68	-7.45	0.48	-4.62	113.14	172.71	0.53
3	0	-10.76	147.69	8.20	7.86	-0.55	1.17	159.27	172.71	0.08
4	0	0.00	6.55	5.93	0.00	0.00	0.55	6.62	166.99	24.25
5	0	0.07	6.76	6.21	0.00	0.00	0.55	6.76	154.31	21.80
6	0	0.07	7.38	6.55	0.00	0.07	0.55	7.38	153.62	19.85
7	0	0.07	8.27	6.69	0.00	0.07	0.62	8.27	165.54	19.03
8	0	0.21	10.62	1.86	-0.07	0.41	0.14	10.48	172.71	15.50
9	0	-0.48	14.75	3.65	0.14	1.45	0.14	15.44	172.71	10.19
10	0	-3.38	19.79	4.76	0.69	0.97	0.97	23.44	172.71	6.38
11	0	-4.96	12.96	8.20	-7.03	1.24	0.97	22.96	172.71	6.51
12	0	-3.72	17.86	4.21	0.55	0.90	0.97	21.79	172.71	6.93
13	0	7.79	-5.38	12.20	-1.38	-0.83	2.07	18.68	172.71	8.25
14	170	80.46	3.31	80.39	0.97	-2.69	0.00	77.29	172.71	1.23
15	60	-1.72	-0.14	-1.72	0.00	0.00	0.00	1.59	172.71	106.37
16	180	6.55	0.21	6.48	-0.07	0.14	-0.07	6.34	172.71	26.09

表 6.2.6-18 正常狀態時組合負載對密封鋼筒主要薄膜+彎矩應力 Pm+Pb (MPa)

2. 材料容許應力採用 ASME Code Service Level A 規定.

表 6.2.6-19	正常狀態明	寺組合員	載對密封鋼筒	主要薄膜+彎氛	矩+次要應力	J P+Q (MPa)
------------	-------	------	--------	---------	--------	-------------

截面1	角度 (度)	SX	SY	SZ	SXY	SYZ	SXZ	應力強度	容許應力 ^{2,3}	安全餘裕
1	0	25.17	76.33	17.37	0.90	0.28	0.00	58.95	345.43	4.86
2	0	8.41	-123.62	-47.64	-8.20	0.76	-4.62	133.41	345.43	1.59
3	0	-12.20	169.20	17.79	8.34	-0.69	2.07	182.30	345.43	0.89
4	0	0.00	6.62	6.00	0.00	0.07	0.55	6.69	333.92	49.07
5	180	-0.07	6.96	6.14	0.07	-0.14	-0.55	7.10	308.61	42.46
6	0	0.00	7.31	3.79	0.07	0.14	0.34	7.38	307.30	40.81
7	0	0.07	8.34	6.69	0.00	0.00	0.62	8.34	331.09	38.85
8	0	0.14	11.24	2.69	-0.14	0.55	0.21	11.17	345.43	29.89
9	0	5.58	18.27	5.17	6.48	0.76	-0.07	18.20	345.43	17.99
10	0	-33.44	14.62	-7.38	-3.03	0.90	2.00	48.61	345.43	6.10
11	180	10.69	-47.37	-10.07	-4.62	-0.83	1.45	58.88	345.43	4.87
12	0	-33.44	14.62	-7.38	-3.03	0.90	2.00	48.61	345.43	6.10
13	180	-24.06	9.10	-2.69	-2.96	-0.48	-1.72	33.85	345.43	9.21
14	180	-88.39	-0.90	-87.91	1.10	-0.90	-0.83	88.12	345.43	2.92
15	50	-4.41	-0.69	-4.41	-0.07	0.00	0.07	3.79	345.43	90.21
16	50	-4.41	-0.69	-4.41	-0.07	0.00	0.07	3.79	345.43	90.21

1. 應力分析位置示意圖如圖 6.2.6-13.

2. 材料容許應力採用 ASME Code Service Level A 規定.

^{3.} 由於 ASME Section Ⅲ,NB 中相關於 Service Level B 的敘述中,並未規範主要應力(Primary Stress,P)+次要應力(Secondary Stress,Q)之容許應力值,所以分析計算中以較嚴謹之 Service Level A 之容許應力做比對。故本表除適用正常貯存狀態外,亦適用於異常溫度(-40℃及 41℃)、最大預期熱負載(56℃)及進氣口半堵塞狀態。

截面	Sx	Sy	Sxy	應力強度	容許應力	安全餘裕
257	6.89	2.76	1.38	6.89	310.27	42.56
192	6.21	2.07	-1.38	6.89	310.27	44.14
65	6.21	2.07	-1.38	6.89	310.27	44.54
108	1.38	6.89	-0.69	6.89	310.27	44.69
54	6.21	1.38	1.38	6.89	310.27	44.78
129	6.21	2.07	1.38	6.89	310.27	44.96
234	1.38	6.89	-0.69	6.89	310.27	45.12
119	6.21	1.38	-1.38	6.89	310.27	46.29
246	6.21	1.38	-1.38	6.21	310.27	46.62
182	6.21	1.38	1.38	6.21	310.27	46.63
300	1.38	6.21	0.69	6.21	310.27	48.52
171	1.38	6.21	0.69	6.21	310.27	48.53
229	1.38	2.07	1.38	3.45	310.27	93.14
301	-0.69	2.07	0.00	3.45	310.27	93.70
172	-0.69	2.07	0.00	3.45	310.27	93.76
269	1.38	-2.07	-0.69	3.45	310.27	94.20
140	1.38	-2.07	-0.69	3.45	310.27	94.28
203	1.38	-2.07	0.69	3.45	310.27	94.40
77	1.38	-2.07	0.69	3.45	310.27	94.44
166	1.38	2.07	-1.38	3.45	310.27	94.83
235	-0.69	2.76	0.00	3.45	310.27	95.17
295	1.38	2.07	-1.38	3.45	310.27	95.36
109	-0.69	2.76	0.00	3.45	310.27	95.57
71	0.00	1.38	1.38	3.45	310.27	95.75
134	0.00	1.38	-1.38	3.45	310.27	95.84
263	0.00	1.38	-1.38	3.45	310.27	95.84
197	0.00	1.38	1.38	3.45	310.27	96.00
103	1.38	2.07	1.38	3.45	310.27	97.58
165	-1.38	-0.69	-1.38	3.45	310.27	97.66
294	-1.38	-0.69	-1.38	3.45	310.27	97.68
27	2.07	-1.38	0.69	3.45	310.27	97.81
102	-1.38	-0.69	1.38	3.45	310.27	97.81
40	2.07	-1.38	-0.69	3.45	310.27	97.86
228	-1.38	-0.69	1.38	3.45	310.27	97.88
73	0.00	2.07	1.38	3.45	310.27	98.76
187	-2.76	-0.69	1.38	2.76	310.27	99.45
60	-2.76	-0.69	1.38	2.76	310.27	99.51
252	-2.76	-0.69	-1.38	2.76	310.27	99.58
124	-2.76	-0.69	-1.38	2.76	310.27	99.58
199	0.69	2.07	1.38	2.76	310.27	100.65

表 6.2.6-20 正常狀態下密封鋼筒中承載圓盤 主要薄膜+彎矩應力 Pm+Pb (MPa)
截面	Sx	Sy	Sxy	應力強度	容許應力1	安全餘裕
3	-1.38	124.11	0.00	125.49	620.53	3.93
4	-1.38	124.11	0.00	125.49	620.53	3.93
1	-2.76	120.66	0.00	123.42	620.53	4.03
2	-2.76	120.66	0.00	123.42	620.53	4.03
14	97.91	36.54	44.13	121.35	620.53	4.11
16	97.22	36.54	44.13	120.66	620.53	4.14
15	95.15	39.30	-44.82	119.97	620.53	4.18
13	95.15	38.61	-44.82	119.28	620.53	4.20
103	9.65	-106.87	-5.52	117.21	620.53	4.29
76	-51.02	-104.80	-13.10	107.56	620.53	4.76
202	-51.02	-104.80	-13.10	107.56	620.53	4.77
268	-51.02	-104.80	13.10	107.56	620.53	4.77
139	-51.02	-104.11	13.10	107.56	620.53	4.78
229	-9.65	-104.11	-6.89	104.80	620.53	4.92
166	-9.65	-104.11	6.21	104.11	620.53	4.95
295	-11.03	-103.42	6.21	104.11	620.53	4.97
289	-30.34	-99.29	8.27	100.66	620.53	5.18
97	-30.34	-99.29	-8.27	100.66	620.53	5.18
160	-30.34	-99.29	8.27	100.66	620.53	5.19
223	-30.34	-99.29	-8.27	99.97	620.53	5.19
84	-37.92	-95.84	-8.96	97.22	620.53	5.38
210	-37.92	-95.84	-8.96	97.22	620.53	5.39
276	-37.92	-95.84	8.96	97.22	620.53	5.39
147	-37.92	-95.15	8.96	96.53	620.53	5.41
171	-62.05	-86.19	18.62	95.84	620.53	5.47
300	-61.36	-85.50	18.62	95.84	620.53	5.48
77	-45.51	-92.39	-11.03	94.46	620.53	5.55
203	-46.20	-91.70	-11.03	94.46	620.53	5.58
269	-46.20	-91.70	11.03	94.46	620.53	5.58
140	-46.20	-91.70	11.03	93.77	620.53	5.60
74	-57.23	-88.94	-13.79	93.77	620.53	5.61
266	-57.23	-88.25	13.79	93.77	620.53	5.61
200	-57.23	-88.25	-13.79	93.77	620.53	5.62
137	-57.23	-88.25	13.79	93.77	620.53	5.62
18	-86.87	-49.64	-16.55	93.77	620.53	5.64
31	-86.87	-49.64	-16.55	93.77	620.53	5.64
199	-89.63	-39.99	-10.34	91.70	620.53	5.77
34	-85.50	-42.06	15.17	90.32	620.53	5.88
21	-85.50	-42.06	15.17	90.32	620.53	5.88
24	-79.29	-58.61	-17.93	90.32	620.53	5.90

 由於 ASME Section III,NB 中相關於 Service Level B 的敘述中,並未規範主要應力(Primary Stress,P)+次要應力(Secondary Stress,Q)之容許應力值,所以分析計算中以較嚴謹之 Service Level A 之容許應力做比對。故本表除適用正常貯存狀態外,亦適用於異常溫度(-40℃及 41℃)、最大預期熱負載(56℃)及進氣口半堵塞狀態。

元件	應力類型	最大應力強度1	節點溫度 ℃ (°F)	容許應力 ^{2,3}	安全餘裕
	$P_m + P_b$	3.56	109(229)	181.34	50
頂部銲件	$P_m + P_b + Q$	111.01	109(228)	361.99	2.26
	$P_m + P_b$	6.21	132(269)	206.85	32.3
底部銲件	$P_m + P_b + Q$	321.30	95 (203)	413.69	0.29

表 6.2.6-22 提籃銲件之最大應力-正常情況(MPa)

1. 節點應力來自有限元素分析計算.

2. 頂部與底部銲件的容許應力值分別保守採用 260℃與 149℃的容許應力值.

3. 由於ASME SectionⅢ,NB中相關於Service Level B的敘述中,並未規範主要應力(Primary Stress,P)+次要應力 (Secondary Stress,Q)之容許應力值,所以分析計算中以較嚴謹之Service Level A之容許應力做比對。故本表 除適用正常貯存狀態外,亦適用於異常溫度(-40℃及41℃)、最大預期熱負載(56℃)及進氣口半堵塞狀態。

負載	應力方向				應力 b	(KPa)			
組合 ^a		靜負載	活負載	風力 ^c	熱負載 ^d	地震 ^e	颱風 ^f	洪水 ^g	總計
混凝土	設外表面:								
1	垂直	-289.59	-296.49		—	—	—	—	-586.08
2	垂直	-220.64	-220.64	—	—	—	—	—	-441.28
3	垂直	-220.64	-220.64	-179.27		—	—	—	-620.55
4	垂直	-206.85	-172.38	—		—	—	—	-379.23
5	垂直	-206.85	-172.38		—	-903.80	—	—	-1283.03
7	垂直	-206.85	-172.38				_	-137.90	-517.13
8	垂直	-206.85	-172.38	—	—	—	-137.90	—	-517.13
混凝土	設內表面:								
1	垂直	-289.59	-296.49		—		_		-586.08
	圓周	0.00	0.00	—		—	—	—	0
2	垂直	-220.64	-220.64		-5743.4	—	—	—	-6184.68
	圓周	0.00	0.00	—	-1013.54	—	—	—	-1013.54
3	垂直	-220.64	-220.64	-179.27	-5743.4	—	—	—	-6363.95
	圓周	0.00	0.00	0.00	-985.96				-985.96
4	垂直	-206.85	-172.38		-5583.37	—	—	—	-5962.6
	圓周	0.00	0.00	—	-718.44	—	—	—	-718.44
5	垂直	-206.85	-172.38	_	-4504.40	-689.48		_	-5573.11
	圓周	0.00	0.00	—	-794.98	—	—	—	-794.98
7	垂直	-206.85	-172.38		-4504.40	—	—	-137.90	-5021.53
	圓周	0.00	0.00		-794.98	—	—	—	-794.98
8	垂直	-206.85	-172.38		-4504.40		-137.90	_	-5021.53
	圓周	0.00	0.00	—	-794.98	—	—	—	-794.98

表 6.2.6-23 混凝土護箱負載組合計算最大應力值

a 關於墜落及傾倒之組合負載詳見本章六、(三).5 及 六、(三).6 節。

b 正值應力為拉應力;負值應力為壓應力。

c 本章六、(三).12 節颱風造成之應力保守加上 1.275 負載係數進行評估。

d 混凝土外表面拉應力由鋼筋承受故不在表中。

e 應力參考本章六、(三).9節分析。

f 應力參考本章六、(三).12節分析。

g 應力參考本章六、(三).10節分析。

	應力 (MPa)	容許應力 ¹ (MPa)	安全餘裕
混凝土	6.36	19.31	+2.03
鋼筋			
正常狀況 - 垂直	36.8	372.32	+9.1
- 圓周	44.29	372.32	+7.4
異常及意外狀況 ² - 垂直	49.5	372.32	+6.5
- 圓周	55.58	372.32	+5.69

表 6.2.6-24 混凝土及鋼筋最大應力

1 混凝土容許壓應力為 (0.7)×(27.58 MPa)=19.31 MPa。0.7 為 ACI 349-97, Section 9.3 之折減係數; 27.58 MPa 為混 凝土抗壓強度。鋼筋之容許應力則依 ACI 規定在本文中計算。

2 結果參考本章 六、(三).1節。

		正常狀況		異常及意外狀況			
位置	計算應力 (KPa)	容許應力 ¹ (KPa)	安全餘裕 M.S.	計算應力 (KPa)	容許應力 ¹ (KPa)	安全餘裕 M.S.	
垂直部分 1;底層	262.66	2206.35	7.4	648.93	2206.35	2.4	
垂直部份 1; 中層	186.98	2206.35	10.8	501.44	2206.35	3.4	
垂直部份 1; 頂層	62.15	2206.35	34.5	86.52	2206.35	24.5	
垂直部份 2;底層	596.31	2206.35	2.7	1103.18	2206.35	1.0	
垂直部份 2; 中層	290.31	2206.35	6.6	689.48	2206.35	2.2	
垂直部份 2; 頂層	131.33	2206.35	15.8	416.29	2206.35	4.3	
垂直部份 3;底層	525.32	2206.35	3.2	848.60	2206.35	1.6	
垂直部份 3; 中層	459.66	2206.35	3.8	959.28	2206.35	1.3	
垂直部份 3; 頂層	408.58	2206.35	4.4	817.17	2206.35	1.7	
垂直部份 4; 底層	256.55	2206.35	7.6	329.31	2206.35	5.7	
垂直部份 4; 中層	408.58	2206.35	4.4	848.60	2206.35	1.6	
垂直部份 4; 頂層	1002.89	2206.35	1.2	1697.19	2206.35	0.3	

表 6.2.6-25 混凝土護箱平均混凝土軸向張應力

1 混凝土容許張應力為 0.08 × 27.58 MPa=2.2064 MPa。Reinforced Concrete Design, Kenneth Leet, 2nd Edition, McGraw-Hill, 1991.[30]建議混凝土容許張應力之折減係數介於0.08~0.15之間,在此保守使用0.08; 27.58 MPa為混凝土抗壓強度。

		正常狀況		異常及意外狀況			
位置	計算應力 (KPa)	容許應力 (KPa)	安全餘裕 M.S.	計算應力 (KPa)	容許應力 (KPa)	安全餘裕 M.S.	
垂直部份 1; 0°層	200.58	2206.35	10.0	490.30	2206.35	3.5	
垂直部份 1; 6.42°層	193.54	2206.35	10.4	525.32	2206.35	3.2	
垂直部份 2; 0°層	393.99	2206.35	4.6	711.73	2206.35	2.1	
垂直部份 2; 6.42°層	408.58	2206.35	4.4	689.48	2206.35	2.2	
垂直部份 3; 0°層	596.31	2206.35	2.7	882.54	2206.35	1.5	
垂直部份 3; 6.42°層	580.62	2206.35	2.8	817.17	2206.35	1.7	
垂直部份 4; 0°層	424.30	2206.35	4.2	580.62	2206.35	2.8	
垂直部份 4; 6.42°層	401.15	2206.35	4.5	538.13	2206.35	3.1	

表 6.2.6-26 混凝土護箱平均混凝土圓周向張應力

表 6.2.6-27 外加屏蔽於不同狀況下內外表面之最大溫度差統計表

條件	周圍溫度	最大溫度差	LF	最大溫度差×LF
32℃ 正常操作狀況	32°C (90°F)	0.3 °C	1.275	0.4 °C
56℃意外狀況	56°C(133°F)	0.55°C	1.00	0.55°C
41℃異常操作狀況	41°C(106°F)	0.35 °C	1.00	0.35 °C
32℃異常操作狀況 (一半進氣口堵住)	32°C (90°F)	11.4 °C	1.00	11.4 ℃
				12.0°C (21.6°F)***
-40℃異常操作狀況	-40°C(-40°F)	6.0 °C	1.00	6.0 °C

6.2.6-27 (a) 屏蔽蓋板在不同狀況下之最大溫度差統計表

***分析保守使用之最大溫差值 12.0℃

條件	周圍溫度	最大溫度差		最大溫度差× LF
32℃ 正常操作狀況	32°C (90°F)	18 °C	1.275	22.95
56℃意外狀況	56°C(133°F)	18.6 °C	1.00	18.6 °C
				25.0°C (45°F) ***
41℃異常操作狀況	41°C (106°F)	18.4 °C	1.00	18.4 °C
32℃異常操作狀況 (一半進氣口堵住)	32°C (90°F)	6 °C	1.00	6 °C
-40℃異常操作狀況	-40°C(-40°F)	16.4 °C	1.00	16.4 °C

6.2.6-27 (b) 中間環狀屏蔽在不同狀況下之最大溫度差統計表

***分析保守使用意外之最高温度及正常狀況下之最大溫差 25.0℃

條件	周圍溫度	最大溫度差		最大溫度差× LF
32℃ 正常操作狀況	32°C (90°F)	1 °C	1.275	1.275 °C
56℃意外狀況	56°C(133°F)	0.7°C	1.00	0.7°C
41℃異常操作狀況	41°C (106°F)	0.8 °C	1.00	0.8 °C
32℃異常操作狀況 (一半進氣口堵住)	32°C (90°F)	1.2 °C	1.00	1.2 °C
-40℃異常操作狀況	-40°C(-40°F)	4 °C	1.00	4 ℃
				5.0°C (9°F) ***

6.2.6-27 (c) 屏蔽底板在不同狀況下之最大溫度差統計表

***分析保守使用意外之最高温度及-40℃異常狀況下之最大温差 5.0℃

組件		最大計算應力(MPa)	容許應力(MPa)	M.S.
	混凝土	3.08	19.31	5.26
中间环状屏蔽	環狀鋼筋	15.29	372.32	23.3
	垂直鋼筋	14.24	372.32	25.2
	混凝土	2.25	19.31	7.6
屏蔽蓋板	環狀鋼筋	27.30	372.32	12.6
	水平鋼筋	21.68	372.32	16.2
	混凝土	2.40	19.31	7.0
因苏皮七	環狀鋼筋	15.73	372.32	22.7
开般広极	垂直鋼筋	15.24	372.32	23.4
	水平板筋	13.41	372.32	26.8

表 6.2.6-28 外加屏蔽應力及安全餘裕統計表

地層 No.	地層 狀況	層底深度 GL. m	層底高程 EL.m	r _t MT/m ³	N_SPT count	C' MT/m ²	φ' 度	E MT/m ²	k ₀	ν
1	表土層	1.6 (0.8~2.5)	20.5	1.92	16 (5~42)	0.00	28	1550.0	0.53	0.3
2	安山岩質 卵石層	6.00	16.00	1.99	>50	1.96	33	3700.0	0.46	0.3
3	砂岩層	35.00	-13.00	2.19	>100	19.60	32	16000.0	0.47	0.2

表 6.2.6-29 整地前簡化土層表與土層參數表

表 6.2.6-30 整地後簡化土層表與土層參數表

地層	地層	層底深度	層底高程	rt	N_SPT	C'	φ'	Е	k ₀	ν
No.	狀況	GL. m	EL. m	MT/m ³	count	MT/m ²	度	MT/m^2		
1	回填碎石	3.50	20.5	1.90	30	0.00	34	2500.0	0.44	0.3
	級配(夯實)									
2	安山岩質	8.00	16.00	1.99	>50	1.96	33	3700.0	0.46	0.3
	卵石層									
3	砂岩層	37.00	-13.00	2.19	>100	19.60	32	16000.0	0.47	0.2

土層狀況	深度 (m)	層厚 H _i (m)	楊式係數 E (MT/m ²)	地中應力 z 向增量 Δσ _{zi} (MT/m ²)	土壓 係數 k ₀	柏松 比ν	地中應力 x 向增量 Δσ _{xi} (MT/m ²)	地中應力 y 向增量 Δσ _{yi} (MT/m ²)	沉陷量 ΔH _{ip} (m)
SF	3.50	3.50	2500.0	7.79	0.44	0.30	3.43	3.43	0.00803
AS/CO	6.00	2.50	3700.0	7.79	0.46	0.30	3.58	3.58	0.00381
AS/CO	8.00	2.00	3700.0	7.79	0.46	0.30	3.58	3.58	0.00305
SS	10.00	2.00	16000.0	7.79	0.47	0.20	3.66	3.66	0.00079
SS	13.00	3.00	16000.0	6.80	0.47	0.20	3.19	3.19	0.00103
SS	16.00	3.00	16000.0	5.65	0.47	0.20	2.66	2.66	0.00086
SS	19.00	3.00	16000.0	4.79	0.47	0.20	2.25	2.25	0.00073
SS	22.00	3.00	16000.0	4.13	0.47	0.20	1.94	1.94	0.00063
SS	25.00	3.00	16000.0	3.60	0.47	0.20	1.69	1.69	0.00055
SS	28.00	3.00	16000.0	3.17	0.47	0.20	1.49	1.49	0.00048
SS	31.00	3.00	16000.0	2.82	0.47	0.20	1.33	1.33	0.00043
SS	35.00	4.00	16000.0	2.44	0.47	0.20	1.15	1.15	0.00050
									0.02089

表 6.2.6-31 基座東側混凝土護箱局部區域立即彈性沉陷計算表

註:假設混凝土護箱均佈加載於所在之基礎板範圍(70 m×17.4 m)

土層狀況	深度 (m)	層厚 H _i (m)	楊式係 數 E (MT/m ²)	地中應力 z 向增量 Δσ _{zi} (MT/m ²)	土壓 係數 k ₀	柏松 比 v	地中應力 x 向增量 Δσ _{xi} (MT/m ²)	地中應力 y 向增量 Δσ _{yi} (MT/m ²)	沉陷量 ∆H _{ip} (m)
SF	3.50	3.50	2500.0	2.07	0.44	0.30	0.91	0.91	0.00213
AS/CO	6.00	2.50	3700.0	2.07	0.46	0.30	0.95	0.95	0.00101
AS/CO	8.00	2.00	3700.0	2.07	0.46	0.30	0.95	0.95	0.00081
SS	10.00	2.00	16000.0	2.07	0.47	0.20	0.97	0.97	0.00021
SS	13.00	3.00	16000.0	1.81	0.47	0.20	0.85	0.85	0.00028
SS	16.00	3.00	16000.0	1.50	0.47	0.20	0.71	0.71	0.00023
SS	19.00	3.00	16000.0	1.28	0.47	0.20	0.60	0.60	0.00019
SS	22.00	3.00	16000.0	1.10	0.47	0.20	0.52	0.52	0.00017
SS	25.00	3.00	16000.0	0.96	0.47	0.20	0.45	0.45	0.00015
SS	28.00	3.00	16000.0	0.85	0.47	0.20	0.40	0.40	0.00013
SS	31.00	3.00	16000.0	0.75	0.47	0.20	0.35	0.35	0.00011
SS	35.00	4.00	16000.0	0.65	0.47	0.20	0.31	0.31	0.00013
									0.00555

表 6.2.6-32 基座西側混凝土地坪區域立即彈性沉陷計算表

註: 假設筏式基礎西側混凝土地坪區域之基礎板範圍(70 m×17.6 m),並無承載護箱 之重量

(七) 結語

經有限元素程式 ANSYS 9.0 的評估結果, 貯存設施之密封鋼筒及混凝土 護箱在正常貯存的各項情況, 皆滿足設計需求與相關規範要求。另外, 對於 吊運設施之傳送護箱及相關組件在裝卸的分析結果, 以及對混凝土基座之承 載力、沉陷量與結構分析結果, 亦顯示所有的安全係數皆符合相關規範要求。

分析結果顯示密封鋼筒在正常貯存狀態各種組合負載作用下,靠近密封 鋼筒底部外殼位置有最小安全餘裕,其值為 0.08;密封鋼筒中的燃料提籃的 各組件,包含頂部/底部銲件與承載圓盤都呈現高安全餘裕。顯示密封鋼筒皆 可符合 ASME Code 的要求。

正常貯存狀態下,混凝土護箱中的混凝土在承壓與張力狀態的最小安全 餘裕分別為2.03與0.3;護箱中的鋼筋則有更高的安全餘裕。另外,混凝土護 箱外圍的混凝土外加屏蔽的計算結果,顯現其擁有比混凝土護箱更高的安全 餘裕,因為外加屏蔽的設計目的在於其屏蔽功能,不在於承載結構負荷。分 析結果,無論混凝土護箱或是混凝土外加屏蔽皆可充分滿足 ACI 349 規範要 求。

對傳送護箱而言,皆能滿足 ANSI 14.6 與 NUREG-0612 在有複置負載路 徑條件下,其安全係數高於材料降伏強度的 3 倍與極限強度的 5 倍;與在無 複置負載路徑條件下,其安全係數高於材料降伏強度的 6 倍與極限強度的 10 倍的要求。傳送護箱在吊運時受力,其最小安全係數為 6.8 倍材料降伏強度或 是 10.5 倍材料極限強度,位置出現在傳送護箱外壁吊耳軸上方。

場址基座的計算結果是在基座的東側有較大的彈性沉陷量,其值只有 2.09 cm,此基座沉陷量,對貯存設施而言實在微不足道。

(八) 參考文獻

- 1. 10 CFR 72, Code of Federal Regulations, "Licensing Requirements for the Independent Storage of Spent Fuel and High Level Radioactive Waste," January 1996.
- 2. "Safety Analysis Report for the UMS Safety Analysis Report for the UMS Universal Transport Cask," EA790-SAR-001, Docket No. 71-9270, NAC International, Atlanta, GA, April 1997.
- 3. ANSI/ANS 57.9-1992, "Design Criteria for an Independent Spent Fuel Storage Installation (Dry Type)," American National Standards Institute, May 1992.
- 4. American Concrete Institute, "Code Requirements for Nuclear Safety Related Concrete Structures (ACI-349-97) and Commentary (ACI 349R-97)," April 1997.
- 5. ASME Boiler and Pressure Vessel Code, Section III, Division I, Subsection NB, "Class 1 Components," 2004 Edition.
- 6. ASME Boiler and Pressure Vessel Code, Section III, Division I, Subsection NG, "Core Support Structures," 2004 Edition.
- 7. NUREG/CR 6322, "Buckling Analysis of Spent Fuel Baskets," U.S. Nuclear Regulatory Commission, May 1995.
- 8. NUREG-0612, "Control of Heavy Loads at Nuclear Power Plants," U.S. Nuclear Regulatory Commission, July 1980.
- 9. American National Standards Institute, "Radioactive Materials Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4,500 kg) or More," ANSI N14.6-1993,1993.
- 10. ASME Boiler and Pressure Vessel Code, Section II, Part D, "Material Properties," 2004 Edition.
- 11. ASME Boiler and Pressure Vessel Code, Division I, Section III, Appendices, 2004 Edition,.
- 12. "Metallic Materials Specification Handbook," 4th Edition, R. B. Ross, London, Chapman and Hall, 1992.
- 13. ASME Boiler and Pressure Vessel Code, Code Cases-Nuclear Components, 2000, December, 8, CASE N-71-18.
- 14. ASTM A 615- 95b, Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement, Annual Book of ASTM Standards, Vol. 01.04, American Society for Testing and Materials, Conshohocken, PA, 1996.
- 15. Metallic Materials and Elements for Aerospace Vehicle Structures, Military Handbook MIL-HDBK-5G, U.S. Department of Defense, November 1994.
- 16. Handbook of Concrete Engineering, 2nd Edition, M. Fintel, Van Nosttrand Reinhold Co., New York.
- 17. "NS-4-FR Fire Resistant Neutron and/or Gamma Shielding Material," GESC Product Data, Genden Engineering Services & Construction Co., Tokyo, Japan.
- NRC Bulletin 96-04, "Chemical, Galvanic, or Other Reactions in Spent Fuel Storage and Transportation Casks," U.S. Nuclear Regulatory Commission, July 5, 1996.
- 19. ASM Handbook, Corrosion, Vol. 13, ASM International, 1987.
- 20. "Guidelines for the use of Aluminum with Food and Chemicals (Compatibility Data on Aluminum in the Food and Chemical Process Industries," Aluminum Association, Inc., Washington, DC, April 1984.
- 21. TRW, Nelson Division, "Embedment Properties of Headed Studs," Design Data 10,

1975.

- 22. "Design of Weldments, Omer Blodgett, The Lincoln Arc Welding Foundation, Cleveland, OH, August 1976.
- 23. "Manual of Steel Construction, Allowable Stress Design," American Institute of Steel Construction, Inc., Ninth Edition, Chicago, Illinois, 1991.
- 24. "Machinery's Handbook," 25nd Edition, Erik Oberg, et. al, First Printing, Industrial Press, Inc., New York, 1996.
- 25. NUREG/CR-1815, "Recommendations for Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Up to Four Inches Thick," U.S. Nuclear Regulatory Commission, Washington, DC, 1981.
- 26. "Roark's Formulas for Stress and Strain," Sixth Edition, Warren C. Young, McGraw-Hill, Inc., New York, 1989.
- 27. "Machinery's Handbook," 23rd Edition, Erik Oberg, Fourth Printing, Industrial Press, Inc., New York, 1990.
- 28. NUREG/CR-1815, "Recommendations for Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Up to Four Inches Thick," U. S. Nuclear Regulatory Commission, Washington, DC, 1981.
- 29. Maddux, Gene E., "Stress Analysis Manual," AFFDL-TR-69-42, Air Force Flight Dynamics Laboratory, August 1969.
- 30. Leet Kenneth, "Reinforced Concrete Design," 2nd Edition, McGraw-Hill, 1991.
- Regulatory Guide 1.12 "Nuclear Power Plant Instrumentation For Earthquakes", Nuclear Regulatory Commission, Draft Issued as DG-1033, Revision 2, March 1997.
- 32. "建築法",中華民國 93 年1月 20 日總統華總一義字第 09300007831 號令修 正公布施行。
- 33. "中華民國建築技術規則",93年12月14日內政部台內營字第0930087306號,
 民國94年元月,民國94年7月1日施行。
- 34. "建築物基礎構造設計規範", 民國 90 年。
- 35. 益鼎工程股份有限公司,"核能一、二廠用過核燃料中期貯存設施計畫候選場 址工程地質調查工作期末報告",民國 81 年 12 月。
- 36. 富國技術工程股份有限公司,"核一廠用過核燃料中期貯存設施興建計畫第一 期工程基地地質鑽探與試驗報告書",民國 86 年 12 月。
- 37. 豪捷工程有限公司,"核一廠乾式貯存場址地質鑽探與試驗報告書",民國 95 年3月。
- Final Safety Analysis Report-Chinshan Nuclear Power Station Units 1&2, Taiwan Power Company, 1999 .
- 39. Regulatory Guide 1.198-Procedures and Criteria for Assessing Seismic Soil Liquefaction at Nuclear Power Plant Sites, U.S.
- 40. 核能研究所, ISFSI-04-CAL-04-06002, "核一廠乾式貯存設施密封鋼筒穩態熱 傳分析計算書"最新版
- 41. 核能研究所, ISFSI-04-CAL-02-06008, "密封鋼筒燃料管分析"最新版
- 42. 核能研究所, ISFSI-04-CAL-02-06009, "密封鋼筒結構頂蓋上舉分析"最新版

- 43. 核能研究所, ISFSI-04-CAL-02-06015, "在貯存狀態的密封鋼筒結構分析"最 新版
- 44. 核能研究所, ISFSI-04-CAL-02-06017, "密封鋼筒封銲-銲道臨界瑕疵評估" 最 新版
- 45. 核能研究所, ISFSI-04-CAL-02-06004, "傳送護箱結構分析" 最新版
- 46. 核能研究所, ISFSI-04-CAL-02-06003, "門板及軌道分析"最新版
- 47. 核能研究所, ISFSI-04-CAL-02-06018, "混凝土護箱貯存狀況分析"最新版
- 48. 核能研究所, ISFSI-04-CAL-02-06010, "貯存設備重量及重心計算" 最新版
- 49. 核能研究所, ISFSI-04-CAL-02-06006, "混凝土護箱貯存-底部上舉分析" 最 新版
- 50. 核能研究所, ISFSI-04-CAL-02-06007, "混凝土護箱貯存-頂部上舉分析" 最新 版
- 51. 核能研究所, ISFSI-04-CAL-02-06023, "混凝土護箱外加屏蔽結構分析" 最新 版
- 52. 核能研究所, ISFSI-04-CAL-02-06014, "密封鋼筒頂部/底部及燃料格架支撐板 銲件分析"最新版
- 53. American Institute of Steel Construction, "Specification for Structural Steel Buildings — Allowable Stress Design and Plastic Design," published in the AISC "Manual of Steel Construction"
- 54. "Hoisting, Rigging, and Transporting of Items for Nuclear Power Plants", ANSI/ASME N45.2.15, 1981.
- 55. ANSI/AWS D1.1 "Structural Welding Code-Steel" An American National Standards, 2004
- 56. 核能研究所, ISFSI-04-REP-06008, "熱傳評估報告", 最新版
- 57. 核能研究所, ISFSI-04-REP-06011, "ISFSI 貯存場基礎承載力、沉陷量及液化 潛能評估報告", 最新版
- 58. 核能研究所, ISFSI-03-REP-06004, "ISFSI 貯存場基座結構設計報告", 最新版
- 59. Regulatory Guide 1.84, "DESIGN, FABRICATION, AND MATERIALS CODE CASE ACCEPTABILITY, ASME SECTION III", August 2005, Rev. 33.
- 60. "Standard Specification for Autocatalytic(Eletroless) Nickel-Phosphorus Coatings on Metal", ASTM, B733-97.
- 61. NUREG 1536," Standard Review Plan for Dry Cask Storage System.", 1997/01
- 62. NUREG 1567," Standard Review Plan for Spent Fuel Dry Storage Facilities.", 2000/03.

附錄 6.2.A 貯存系統之材料機械性質

Temperature (°F)	-40	-20	70	200	300	400	500	750	800	900
Ultimate Tensile Stress [*] Su(ksi)	75.0	75.0	75.0	71.0	66.2	64.0	63.4	63.3	62.8	60.8
Yield Stress [*] Sy (ksi)	30.0	30.0	30.0	25.0	22.4	20.7	19.4	17.2	16.9	16.2
Design Stress Intensity [*] , Sm, (ksi-)	20.0	20.0	20.0	20.0	20.0	18.6	17.5	15.5	15.2	No value given
Modulus of Elasticity [*] (E+3, ksi)	28.9	28.8	28.3	27.5	27.0	26.4	25.9	24.5	24.1	23.5
Alternating Stress ^{**} @ 10 cycles (ksi)	718.0	718.0	708.0	690.5	675.5	663.0	645.5	610.4		
Alternating Stress ^{**} @ 10 [*] cycles (ksi)	28.7	28.7	28.3	27.6	27.0	26.5	25.8	24.4		
Coefficient of Thermal Expansion [*] , α (E-6, in/in/°F)	No V Gi	Value ven	8.5	8.9	9.2	9.5	9.7	10.0	10.1	No value given
Poisson's Ratio [*]		0.31								
Density*		503 lbm/ft ³ (0.291 lbm/in ³)								

表 6.2.A-1 SA-240, Type 304 不銹鋼機械性質

General Note: SA-182, Type 304 stainless steel may be substituted for SA-240, Type 304 stainless steel provided that the SA-182 material yield and ultimate strengths are equal to or greater than those of the SA-240 material. The SA-182 forging material and the SA-240 plate material are both Type 304 austenitic stainless steels. Austenitic stainless steels do not experience a ductile-to-brittle transition for the range of temperatures considered in this Safety Analysis Report. Therefore, fracture toughness is not a concern.

* ASME Code, Section II, Part D [10].

** ASME Code, Appendix I [11].

Temperature (°F)	-40	-20	70	200	300	400	500	750		
Ultimate Tensile ^{*[***]} Stress, Su (ksi)	No Value Given	75.0	75.0	71.0	66.2	64.0	63.4	63.3		
Yield Stress ^{*[***]} , Sy (kai)	No Value Given	30.0	30.0	25.0	22.4	20.7	19.4	17.2		
Design Stress Intensity [*] , Sm (ksi)	No Value Given	20.0	20.0	20.0	20.0	18.6	17.5	15.5		
Modulus of Elasticity [*] (ksi)	28.9E+3	28.8E+3	28.3E+3	27.5E+3	27.0E+3	26.4E+3	25.9E+3	24.5E+3		
Alternating Stress ^{**} @ 10 cycles (ksi)	720	718	708	683	675	663	645	610		
Alternating Stress ^{**} @ 10 ⁶ cycles (ksi)	28.8	28.7	28.3	27.6	27.0	26.5	25.8	24.4		
Coefficient of Thermal Expansion [*] , α(in/in/°F)	No Valu	e Given	8.6E-6	9.0E-6	9.8E-6	10.4E-6	10.9E-6	12.0E-6		
Poisson's Ratio*	0.31									
Density*		502 lbm/ft ³ (0.291 lbm/in ³)								

表 6.2.A-2 SA-479, Type 304 不銹鋼機械性質

* ASME Code, Section II, Part D [10].

** ASME Code, Appendix I [11].

$$\frac{Sm_{temp}}{Sm_{70^{\circ}F}}(Su_{70^{\circ}F}) = Su_{temp}$$

*** Calculated based on Design Stress Intensity

Temperature (°F)	-40	-20	70	200	300	400	500	750
Ultimate Tensile [*] Stress, Su (ksi)	70.0	70.0	70.0	66.1	61.2	58.7	57.5	56.0
Yield Stress [*] , Sy (kai)	25.0	25.0	25.0	21.4	19.2	17.5	16.4	14.7
Design Stress Intensity [*] , Sm (ksi)	16.7	16.7	16.7	16.7	16.7	15.8	14.7	13.3
Modulus of Elasticity [*] (ksi)	28.9E+3	28.8E+3	28.3E+3	27.5E+3	27.0E+3	26.4E+3	25.9E+3	24.5E+3
Alternating Stress ^{**} @ 10 cycles (ksi)	718.0	718.0	708.0	690.5	675.5	663.0	645.5	610.4
Alternating Stress ^{**} @ 10 ⁶ cycles (ksi)	28.7	28.7	28.3	27.6	27.0	26.5	25.8	24.4
Coefficient of Thermal Expansion [*] , $\alpha(in/in/F)$	No Valu	e Given	8.5E-6	8.9E-6	9.2E-6	9.5E-6	9.7E-6	10.0E-6
Poisson's Ratio*				0.	31			
Density*			50	3 lbm/ft ³ (0.291 lbm/	/in ³)		

SA-240, Type 304L 不銹鋼機械性質 表 6.2.A-3

ASME Code, Section II, Part D [10]. ASME Code, Appendix I [11]. *

**

Temperature (°F)	-40	-20	70	200	300	400	500	650	700	800
Ultimate Tensile [*] Stress, Su (ksi)	135.0	135.0	135.0	135.0	135.0	131.2	128.6	125.5	123.8	118.1
Yield Stress [*] , Sy (kai)	105.0	105.0	105.0	97.1	93.0	89.7	87.0	83.6	82.5	79.4
Design Stress Intensity [*] , Sm (ksi)	45.0	45.0	45.0	45.0	45.0	43.7	42.9	41.8	No V Giv	Value ven
Modulus of Elasticity [*] (1x10 ³ , ksi)	29.1	29.0	28.5	27.8	27.2	26.7	26.1	25.2	24.9	24.3
Alternating Stress ^{**} @ 10 cycles (ksi)	401.8	401.8	396.2	386.4	378.0	371.0	361.2	341.6		
Alternating Stress ^{**} @ 10 ⁶ cycles (ksi)	19.1	19.1	18.9	18.4	18.0	17.7	17.2	16.3		
Coefficient of Thermal Expansion [*] , $\alpha(in/in/{}^{\circ}F)$	No Value Given	No Value Given	6.2E-6	6.3E-6	6.4E-6	6.5E-6.	6.5E-6	6.7E-6	6.7E-6	6.8E-6
Poisson's Ratio*	0.31									
Density*			50)3 lbm/	ft ³ (0.2	91 lbm/	in ³)			

表 6.2.A-4 SA-705, SA-693 And SA-564, Type 630 17-4 PH 不銹鋼機械性質

* ASME Code, Section II, Part D [10].

** ASME Code, Appendix I [11].

Temperature (°F)	100	200	300	400	500	600	650	700		
Ultimate Tensile ^{***} Stress, Su(ksi)	58.0	58.0	58.0	58.0	No Value Given					
Yield Stress [*] , Sy(ksi)	36.0.	32.8	31.9	30.8	29.1	26.6	26.1	25.9		
Design Stress Intensity [*] , Sm (ksi)	19.3	19.3	19.3	19.3	19.3	18.4	17.8	17.3		
Modulus of Elasticity [*] (ksi)	29.3E+3	28.8E+3	28.3E+3	27.9E+3	27.3E+3	26.5E+3	26.0E+3	25.5E+3		
Coefficient of Thermal Expansion [*] , α (in/in/°F)	6.50E-6	6.70E-6	6.90E-6	7.10E-6	7.30E-6	7.40E-6	7.50E-6	7.60E-6		
Poisson's Ratio [*]				0	31					
Density**				- 0.284	4 lbm/in					

* ASME Code, Section II, Part D [10].
** Metallic Materials Specification Handbook [12].
*** ASME Code Case, Nuclear Components, N-71-18 [13].

	80 (A706)
Ultimate Tensile Stress ^{**} , Su (ksi)	90 (A615, Grade 60)
	100 (A615, Grade 75)
**	60 (A615, Grade 60, and A706)
Yield Stress ^{**} ,Sy (ksi)	75 (A615, Grade75)
Modulus of Elasticity [*] (ksi)	29.88E+3
Coefficient of Thermal Expansion [*] , α(in/in/°F)	6.1E-6
Density ^{**} (lbm/in ³)	0.284

表 6.2.A-6 A615 Grade 60、Grade 75 及 A706 鋼筋機械性質

Metallic Materials Specification Handbook [12]. Annual Book of ASTM Standards [14]. *

**

Temperature (°F)	-20	70	200	300	400	500	750	800
Ultimate Tensile [*] Stress, Su (ksi)	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
Yield Stress [*] ,Sy (kai)	70.0	70.0	65.9	63.7	61.9	60.4	55.7	54.1
Design Stress Intensity [*] , Sm (ksi)	30.0	30.0	30.0	30.0	30.0	30.0	No valu	e given
Modulus of Elasticity [*] (ksi)	29.5E+3	29.0E+3	28.5E+3	28.0E+3	27.6E+3	27.0E+3	24.6E+3	23.9E+3
Alternating Stress ^{**} @ 10 cycles (ksi)	465.0	465.0	453.8	435.0	436.3	429.9	391.7	
Alternating Stress ^{**} @ 10 ⁶ cycles (ksi)	15.8	15.8	15.4	15.2	14.8	14.6	13.3	
Coefficient of Thermal Expansion [*] , $\alpha(in/in/{}^{\circ}F)$	No Value Given	7.0E-6	7.3E-6	7.4E-6	7.6E-6	7.70E-6	8.00E-6	8.05E-6
Thermal Conductivity [*] , (BTU/hr-in°F)	No Value Given	1.98	1.96	1.95	1.93	1.89	1.78	1.75
Poisson's Ratio*				0.	31			
Density*			503	lbm/ft^3 (0	.291 lbm/	in ³)		
Emissivity ³¹				0.	2			

表 6.2.A-7 SA-533, Type B, Class 2 碳鋼機械性質

* ASME Code, Section II, Part D [10].

** ASME Code, Section III, Appendix I [11].

*** The emissivity of 0.2 to 0.32 is for Electroless Nickel on Mild Steel shown in Reference 31, that is listed in Appendix H of this calculation.

Temperature (°F)	100	200	300	400	500	600	650	700	
Ultimate Tensile Stress ^{***} , Su(ksi)	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	
Yield Stress ^{***} , Sy (ksi)	50.0	47.5	45.6	43.0	41.8	39.9	38.9	37.9	
Design Stress Intensity ^{***} , Sm (ksi)	23.3	23.3	23:3	23.3	23.3	23.3	23.3	23.3	
Modulus of Elasticity [*] (ksi)	29.3E+3	28.8E+3	28.3E+3	27.7E+3	27.3E+3	26.5E+3	26.0E+3	25.5E+3	
Coefficient of Thermal Expansion [*] $\alpha(in/in/{}^{\circ}F)$	6.5E-6	6.7E-6	6.9E-6	7.1E-6	7.3E-6	7.4E-6	7.5E-6	7.6E-6	
Poisson's Ratio*	0.31								
Density**				0.2841	bm/in3				

表 6.2.A-8 A588, Type A,B 碳鋼機械性質

* ASME Code, Section II, Part D [10].

** Metallic Materials Specification Handbook [12].

*** ASME Code Cases, Nuclear Components, N-71-18, Tables 1, 2, 3, 4, and 5 for material thickness ≤ 4 inches [13].

Temperature (°F)	70	200	300	400	500	700
Ultimate Tensile ⁶ Stress, Su (ksi)	70.0	70.0	70.0	70.0	70.0	70.0
Yield Stress [*] ,Sy (kai)	36.0	33.0	31.8	30.8	29.3	25.8
Design Stress Intensity [*] , Sm (ksi)	23.3	22.0	21.2	20.5	19.6	17.2
Modulus of Elasticity [*] (ksi)	29.2E+3	28.6E+3	28.1E+3	27.7E+3	27.1E+3	25.3E+3
Alternating Stress ^{**} @ 10 cycles (ksi)	580.0	566.0	556.1	5.44.2	536.3	502.5
Alternating Stress ^{**} @ 10 ⁶ cycles (ksi)	12.5	12.2	11.9	11.7	11.5	10.8
Coefficient of Thermal Expansion [*] , $\alpha(in/in/ \ ^{\circ}F)$	6.4E-6	6.7E-6	6.9E-6	7.1E-6	7.3E-6	7.6E-6
Thermal Conductivity [*] , (BTU/hr-in [°] F)	2.9	2.8	2.7	2.6	2.45	2.2
Poisson's Ratio*	0.31					
Density*	482 lbm/ft ³ (0.279 lbm/in ³)					

表 6.2.A-9 SA-350 Grade LF 2, Class 1 碳鋼機械性質

* ASME Code, Section II, Part D [10].

** ASME Code, Section III, Appendix I [11].

Temperature (°F)	-46	-20	70	200	300	400	500	700
Ultimate Tensile Stress, Su (ksi) ^[***]	No value given	110.0	110.0	104.9	101.5	98.3	95.6	92.9
Yield Stress ^[***] Sy (ksi)	No Value Given	85.0	85.0	81.1	78.1	76.0	73.9	71.8
Design Stress Intensity [*] , Sm (ksi)	28.3	28.3	28.3.	27.0	26.1	25.3	24.6	23.9
Modulus of Elasticity [*] (ksi)	29.9E+3	29.7E+3	29.2E+3	28.4E+3	27.9E+3	27.3E+3	26.8E+3	25.5E+3
Alternating Stress** @10 cycles Sa(ksi)	1104.4	1100.0	1085.0	1058.0	1035.0	1015.0	989.0	935.3
Alternating Stress ^{**} @10 ⁶ cycles, Sa (ksi)	13.0	12.9	12.7	12.4	12.2	11.9	11.6	11.0
Coefficient of Thermal Expansion [*] , $\alpha(in/in/F)$	No Value Given		5.9E-6	6.2E-6	6.30E-6	6.40E-6	6.5E-6	6.6E-6
Poisson's Ratio*	0.31							
Density*	503 lbm/ft ³ (0.291 1bm/in ³)							

表 6.2.A-10 SA-193, Grade B6,高合金鋼螺栓材料機械性質

* ASME Code, Section II, Part D [10].

** ASME Code, Section III, Appendix I [11].

*** Calculated based on Design Stress Intensity

$$\frac{Sm_{temp}}{Sm_{70^\circ F}}(Su_{70^\circ F}) = Su_{temp}$$

Temperature (°F)	70	100	200	300	400	500	600	700	800
Ultimate Tensile Stress ^{**} , Su (ksi)	42.0	40.7	38.2	31.5	1,7.2	6.7	3.4	2.1	No value given
Yield Stress ^{**} , Sy (ksi)	35.0	33.9	312	26.9	14.0	5.3	2.5	1.4	1.4
Design Stress Intensity, Sm (ksi)	10.5	10.5	10.5	8.4	4.4	No Value Given			
Modulus of Elasticity [*] (ksi)	10.0E+3	9.9E+3	9.6E+3	9.2E+3	8.7E+3	8.1E+3	7.0E+3 ¹⁵	No Gi	Value iven
Coefficient of Thermal Expansion ⁶ α(in/in/°F)	12.1E-6	12.4E-6	13.0E-6	13.3E-6	13.6E-6	13.9E-6	14.2E-6	No Gi	Value iven
Poisson's Ratio *	0.33								
Density ⁶		0.098 lbm/in ³							

* ASME Code, Section II, Part D [10].

** Military Handbook MIL-HDBK-5G [15].

Temperature (°F)	70	100	200	300	400	500
Density [*] , (lb/ft ³)	140.0	140.0	140.0	140.0	140.0	140.0
Compressive Strength [*] (psi)	4000.0	4000.0	4000.0	3800.0	3600.0	3400.0
Coefficient of Thermal Expansion [*] , α (in/in/°F)	5.5E-6	5.5E-6	5.5E-6	5.5E-6	5.5E-6	5.5E-6
Modulus of Elasticity [*] , (ksi)	No Value Given	3.64E+3	3.38E+3	3.09E+3	2.73E+3	2.43E+3

表 6.2.A-12 混凝土碳鋼機械性質

* Handbook of Concrete Engineering [16].

表	6.2.A-13	NS-4-FR	中子屏蔽機械性質
---	----------	---------	----------

Property (units) *	86	158	212	302
Compressive Modulus, Ec(ksi)	561	561	561	561
Coefficient of Thermal Expansion, α(in/in/°F)	2.22E-05	4.72E-05	5.88E-05	5.741E-05
Density, (lbm/in ³)	0.0607	0.0607	0.0607	0.0607

* GESC Product Data [17].

Temperature (°F)	70	200	300	400	500	700	800
Ultimate Tensile [*] Stress, Su (ksi)	70.0	70.0	70.0	70.0	70.0	70.0	64.3
Yield Stress [*] , Sy (kai)	38.0	34.8	33.6	32.5	31.0	27.2	25.5
Design Stress Intensity [*] , Sm (ksi)	23.3	23.2	22.4	21.6	20.6	18.1	No value given
Modulus of Elasticity [*] (ksi)	29.4E+3	28.8E+3	28.3E+3	27.9E+3	27.3E+3	25.5E+3	24.2E+3
Alternating Stress ^{**} @ 10 cycles (ksi)	580.0	552.8	543.0	531.5	523.7	477.0	No value given
Alternating Stress ^{**} @ 10 ⁶ cycles (ksi)	12.5	11.9	11.7	11.5	11.3	10.3	No value given
Coefficient of Thermal Expansion [*] , $\alpha(in/in/{}^{\circ}F)$	6.4E-6	6.7E-6	6.9E-6	7.1E-6	7.3E-6	7.6E-6	7.8E-6
Thermal Conductivity [*] , (BTU/hr-in-°F)	2.9	2.8	2.7	2.6	2.45	2.2	2.1
Poisson's Ratio [*]	0.31						
Density*	482 lbm/ft ³ (0.279 lbm/in ³)						

表 6.2.A-14 SA-516, Grade 70 碳鋼機械性質

* ASME Code, Section II, Part D [10].

** ASME Code, Section III, Appendix I [11].

附錄 6.2.B 傳送護箱之保護環分析

經參考文獻 Young, W.C.,"Roark's Formulas for Stress & Strain" [26]計算後,確認保護環是有足夠強度,如下圖所示說明各種物件受 力狀況,假設在均勻環狀線載重,距離中心軸ro,外邊界固定,內邊 界為自由端。

材料性質如下:

保護環:	尺寸規格
厚度: 外半徑(依螺孔中心): 外半徑(依外邊緣):	t = 0.75 in a = 36.415 in c = 37.66 in
內半徑: 傳送護箱之重量:	b = 32.37 in wt = 102,000 lb × 1.1
力作用於保護環之內半徑: 材質: 彈性係數: 波松比:	$r_{o} = 33.53$ in ASTM A588 $E = 28.3 \times 10^{6}$ psi v = 0.31
螺栓數量:	Nb = 32
力作用於保護環之圓周長度:	$L_r = 2\pi r_o = 210.675$ in
單位長度之作用力	$w \equiv \frac{wt}{L_r} = -532.57 \text{ psi}$

剪力模數:

$$G = \frac{E}{2 \cdot (l + v)}$$

 $G = 1.08 \times 10^7 \text{ psi}$

邊界狀況所代表之平板係數 D,可用於傾斜、撓度、彎矩及剪力, Ksb 與 Ksro 為切線剪力係數,可由剪力求得撓度:

$$D = \frac{E \cdot t^3}{12 \cdot (l - v^2)}$$
$$D = 1.101 \times 10^6 \qquad \text{lb-in}$$

正切剪力常數 Ksb 及 Ksro 常用於決定剪力所造成的撓度:

$$K_{sb} = K_{sro} = -1.2 \cdot \frac{r_o}{a} \cdot \ln\left(\frac{a}{r_o}\right)$$
$$= -0.091$$

作用於 b 及 a 點之環狀彎矩(內徑及外徑之彎矩) M_{rb} 及 M_{ra}為: M_{rb} (b,0) = 0 lb-in/in M_{ra} (a,0) = 1,428 lb-in/in

由撓曲行為作用於b及a點之轉換彎矩(內徑及外徑之彎矩)Mtb及 Mta為:

$$\begin{split} M_{tb} (b,0) &= -60.38 \text{ lb-in./in.} \\ M_{ta} (a,0) &= 422.63 \text{ lb-in./in.} \end{split}$$

計算得b及a點之剪應力(內徑及外徑)tb及ta為:

$$\tau_{\rm b} = 0 \text{ psi}$$
$$\tau_{\rm a} = \frac{\text{wt}}{2\pi\text{At}}$$
$$\tau_{\rm a} = -445.8 \text{ psi} (-3.074 \text{ MPa})$$

計算由撓曲行為下於 b 及 a 點之撓曲應力(內徑及外徑之彎矩) Grb 及 Gra 為:

$$\sigma_{r(i)} = \frac{6M_{r(i)}}{t^2}$$

$$\sigma_{rb} = 0 \text{ psi}$$

$$\sigma_{ra} = 15,230 \text{ psi} (105.01 \text{ MPa})$$

計算由於b及a點之轉換撓曲應力(內徑及外徑之彎矩)otb及ota為:

$$\sigma_{t(i)} = \frac{6M_{t(i)}}{t^2}$$

$$\sigma_{tb} = -644.016 \text{ psi } (-4.44 \text{ MPa})$$

$$\sigma_{ta} = 4,721 \text{ psi } (32.55 \text{ MPa})$$

於外徑上之主應力為:

 $\sigma_{la} = 15,250 \text{ psi} (105.15 \text{ MPa})$ $\sigma_{2a} = 4,702 \text{ psi} (32.42 \text{ MPa})$ $\sigma_{3a} = 0 \text{ psi}$

於外徑上(Pm+Pb)之應力強度(Stress Intensity)SIa為:

 $SI_a = \sigma_{1a} - \sigma_{3a}$ $SI_a = 15,250 \text{ psi } (105.15 \text{ MPa})$

於內徑上之主應力為:

 $\sigma_{1b} = 0$ psi $\sigma_{2b} = -644.016$ psi (-4.44 MPa) $\sigma_{3b} = 0$ psi

於內徑上 (Pm+Pb) 之應力強度 SIb 為: SIb = σ_{1b}-σ_{2b} SIb = 644.016 psi (4.44 MPa)

最大應力發生在固定環片外側,在異常情況下,容許應力強度是小於 1.8Sm 及 1.5Sy,依 ASTM A-588 規定,在 300 °F 下容許應力強度

為 1.8(23.3) = 41.94 ksi, 與計算所得之應力 23.59 ksi 相比較, 安全餘裕為:

$$MS = \frac{41.94}{15.25} - 1 = 1.75$$

附錄 6.2.C 傳送護箱之保護環螺栓分析

考慮因人為不小心吊起密封鋼筒所產生對於保護環的作用力,分 析項目包含螺栓拉應力應力分析、螺栓之螺紋分析。

由自重所產生之螺栓拉應力:

$$F_F = \frac{Wt}{N_h} = 3,506 \text{ lb}(1,592 \text{ kg})$$

其中:

Nb = 螺栓數,32

Wt = 護箱重加上 10%動態荷重, 102,000 lb×1.1

= 112,200 lb(50,939 kg)

由彎矩所產生之螺栓拉應力:

$$\mathbf{F}_{\mathbf{M}} = \left(\frac{2 \cdot \boldsymbol{\pi} \cdot \boldsymbol{a}}{N_{b}}\right) \cdot \left(\frac{\boldsymbol{\sigma} \cdot \boldsymbol{t}^{2}}{\boldsymbol{6} \cdot \boldsymbol{L}}\right)$$

 $F_M = 8,200 \text{ lb} (3,723 \text{ kg})$

其中:

a = 螺栓外徑(outer radius of bolt circle), 36.415 in (92.494 cm)

- t = 環厚度(thickness of ring), 0.75 in (1.9 cm)
- $\sigma = a$ 點徑向彎矩應力(radial bending stress), $\sigma_{ra} = 15,230$ psi (105.01 MPa)
- L = 螺栓中心線與環外緣距離, c-a = 1.245 in(3.16 cm)

每一螺栓所受張力:

 $F = F_F + F_M = 11,706 \text{ lb}(5,315 \text{ kg})$

張應力計算如下:

$$\sigma_{t} = \frac{F}{A_{b}} = 26,496 \text{ psi}(182.69 \text{ MPa})$$

其中:

 $A_b = 0.4418 \text{ in}^2$

在異常情況下,螺栓容許應力為 2Sm。SA-193 Grade B6 螺栓,在傳送護箱頂板之最大溫度值 49°C(120°F)下,此容許應力值為 54 ksi, 安全餘裕為:

$$MS = \frac{54,000}{26,496} - 1 = +1.04$$

因 SA-193 Grade B6 bolts 的螺栓強度較保護環片高,所以必須評估板的螺紋剪應力,降伏與極限強度是依 ASTM A-588 於 49 °C(120 °F) 之強度規定。

Sm = 23.3 ksi (160.65 MPa) Sy = 49.5 ksi (341.29 MPa) Su = 70.0 ksi (482.64 MPa)

內螺栓受剪力面積 An 計算如下 [27]:

$$A_{n} = 3.1416nL_{e}D_{s}min\left[\frac{1}{2n}+0.57735(D_{s}min-E_{n}max)\right] = 1.525in^{2} \quad (9.84)$$

cm²)

其中

頂板處之剪應力 Tn 為:

$$\tau_n = \frac{F}{A_n} = \frac{11,706 \ lb}{1.525 \ in^2} = 7,676 \ psi (52.92 \ MPa)$$

每一螺栓所受張力:

 $F = F_F + F_M = 11,706 \text{ lb}(5,315 \text{ kg})$
正常情形下容許剪應力為:

 $\tau_{allowable} = (0.6) (Sm) = (0.6) (23.3 \text{ ksi}) = 13.98 \text{ ksi}(96.39 \text{ MPa})$

安全餘裕 =
$$\frac{13,980}{7,676} - 1 = +0.82$$

满足規範要求。